Description: Lemma for dvdssq . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdssqlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | |
|
2 | nnz | |
|
3 | dvdssqim | |
|
4 | 1 2 3 | syl2an | |
5 | sqgcd | |
|
6 | 5 | adantr | |
7 | nnsqcl | |
|
8 | nnsqcl | |
|
9 | gcdeq | |
|
10 | 7 8 9 | syl2an | |
11 | 10 | biimpar | |
12 | 6 11 | eqtrd | |
13 | gcdcl | |
|
14 | 1 2 13 | syl2an | |
15 | 14 | nn0red | |
16 | 14 | nn0ge0d | |
17 | nnre | |
|
18 | 17 | adantr | |
19 | nnnn0 | |
|
20 | 19 | nn0ge0d | |
21 | 20 | adantr | |
22 | sq11 | |
|
23 | 15 16 18 21 22 | syl22anc | |
24 | 23 | adantr | |
25 | 12 24 | mpbid | |
26 | gcddvds | |
|
27 | 1 2 26 | syl2an | |
28 | 27 | adantr | |
29 | 28 | simprd | |
30 | 25 29 | eqbrtrrd | |
31 | 30 | ex | |
32 | 4 31 | impbid | |