Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
2 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
3 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
4 |
|
dvdsexpim |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
6 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
7 |
6
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ+ ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ+ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ+ ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → 𝐴 ∈ ℕ ) |
11 |
10
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → 𝐴 ∈ ℝ+ ) |
12 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
13 |
|
expgcd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
14 |
3 13
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
16 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℕ ) |
17 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
18 |
16 17
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
19 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
20 |
19 17
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
21 |
|
gcdeq |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℕ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) = ( 𝐴 ↑ 𝑁 ) ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) = ( 𝐴 ↑ 𝑁 ) ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
23 |
22
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
24 |
15 23
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
25 |
9 11 12 24
|
exp11nnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → ( 𝐴 gcd 𝐵 ) = 𝐴 ) |
26 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
27 |
26
|
simprd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
28 |
1 2 27
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
31 |
25 30
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) → 𝐴 ∥ 𝐵 ) |
32 |
31
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) → 𝐴 ∥ 𝐵 ) ) |
33 |
5 32
|
impbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |