Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
2 |
|
elnn0 |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) |
3 |
|
dvdsexpnn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
4 |
3
|
3expia |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
5 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
6 |
|
expeq0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑁 ) = 0 ↔ 𝐵 = 0 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐵 ↑ 𝑁 ) = 0 ↔ 𝐵 = 0 ) ) |
8 |
|
0exp |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ↑ 𝑁 ) = 0 ) |
10 |
9
|
breq1d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 0 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ 0 ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
11 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
12 |
|
nnexpcl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
14 |
13
|
nnzd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
15 |
|
0dvds |
⊢ ( ( 𝐵 ↑ 𝑁 ) ∈ ℤ → ( 0 ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( 𝐵 ↑ 𝑁 ) = 0 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( 𝐵 ↑ 𝑁 ) = 0 ) ) |
17 |
10 16
|
bitrd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 0 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( 𝐵 ↑ 𝑁 ) = 0 ) ) |
18 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
19 |
|
0dvds |
⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
22 |
7 17 21
|
3bitr4rd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ∥ 𝐵 ↔ ( 0 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
23 |
|
breq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ∥ 𝐵 ↔ 0 ∥ 𝐵 ) ) |
24 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
25 |
24
|
breq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( 0 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
26 |
23 25
|
bibi12d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ↔ ( 0 ∥ 𝐵 ↔ ( 0 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
27 |
22 26
|
syl5ibr |
⊢ ( 𝐴 = 0 → ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
28 |
27
|
expdimp |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
29 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
30 |
|
dvds0 |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∥ 0 ) |
31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∥ 0 ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∥ 0 ) |
33 |
|
nnexpcl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
34 |
11 33
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
35 |
34
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
36 |
|
dvds0 |
⊢ ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ → ( 𝐴 ↑ 𝑁 ) ∥ 0 ) |
37 |
35 36
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) ∥ 0 ) |
38 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ↑ 𝑁 ) = 0 ) |
39 |
37 38
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) |
40 |
32 39
|
2thd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 0 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) ) |
41 |
|
breq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0 ) ) |
42 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
43 |
42
|
breq2d |
⊢ ( 𝐵 = 0 → ( ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) ) |
44 |
41 43
|
bibi12d |
⊢ ( 𝐵 = 0 → ( ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ↔ ( 𝐴 ∥ 0 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) ) ) |
45 |
40 44
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐵 = 0 → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
46 |
45
|
impancom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
47 |
8 8
|
breq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ↔ 0 ∥ 0 ) ) |
48 |
47
|
bicomd |
⊢ ( 𝑁 ∈ ℕ → ( 0 ∥ 0 ↔ ( 0 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) ) |
49 |
|
breq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 ∥ 𝐵 ↔ 0 ∥ 0 ) ) |
50 |
|
simpl |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐴 = 0 ) |
51 |
50
|
oveq1d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
52 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
53 |
52
|
oveq1d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐵 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
54 |
51 53
|
breq12d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( 0 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) ) |
55 |
49 54
|
bibi12d |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ↔ ( 0 ∥ 0 ↔ ( 0 ↑ 𝑁 ) ∥ ( 0 ↑ 𝑁 ) ) ) ) |
56 |
48 55
|
syl5ibr |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
57 |
4 28 46 56
|
ccase |
⊢ ( ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ∧ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
58 |
1 2 57
|
syl2anb |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) ) |
59 |
58
|
3impia |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |