| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0abscl | ⊢ ( 𝐴  ∈  ℤ  →  ( abs ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 2 |  | nn0abscl | ⊢ ( 𝐵  ∈  ℤ  →  ( abs ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 3 |  | dvdsexpnn0 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℕ0  ∧  ( abs ‘ 𝐵 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ )  →  ( ( abs ‘ 𝐴 )  ∥  ( abs ‘ 𝐵 )  ↔  ( ( abs ‘ 𝐴 ) ↑ 𝑁 )  ∥  ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) | 
						
							| 4 | 1 2 3 | syl3an12 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( abs ‘ 𝐴 )  ∥  ( abs ‘ 𝐵 )  ↔  ( ( abs ‘ 𝐴 ) ↑ 𝑁 )  ∥  ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 6 | 5 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 8 | 7 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 6 8 | absexpd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐵  ∈  ℤ ) | 
						
							| 11 | 10 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 12 | 11 8 | absexpd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( abs ‘ ( 𝐵 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) | 
						
							| 13 | 9 12 | breq12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  ∥  ( abs ‘ ( 𝐵 ↑ 𝑁 ) )  ↔  ( ( abs ‘ 𝐴 ) ↑ 𝑁 )  ∥  ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) | 
						
							| 14 | 4 13 | bitr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( abs ‘ 𝐴 )  ∥  ( abs ‘ 𝐵 )  ↔  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  ∥  ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 15 |  | absdvdsabsb | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ∥  𝐵  ↔  ( abs ‘ 𝐴 )  ∥  ( abs ‘ 𝐵 ) ) ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  ∥  𝐵  ↔  ( abs ‘ 𝐴 )  ∥  ( abs ‘ 𝐵 ) ) ) | 
						
							| 17 | 5 8 | zexpcld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 18 | 10 8 | zexpcld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 19 |  | absdvdsabsb | ⊢ ( ( ( 𝐴 ↑ 𝑁 )  ∈  ℤ  ∧  ( 𝐵 ↑ 𝑁 )  ∈  ℤ )  →  ( ( 𝐴 ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 )  ↔  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  ∥  ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴 ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 )  ↔  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  ∥  ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 21 | 14 16 20 | 3bitr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  ∥  𝐵  ↔  ( 𝐴 ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) ) |