| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0abscl |
⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
| 2 |
|
nn0abscl |
⊢ ( 𝐵 ∈ ℤ → ( abs ‘ 𝐵 ) ∈ ℕ0 ) |
| 3 |
|
dvdsexpnn0 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ0 ∧ ( abs ‘ 𝐵 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ∥ ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ∥ ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) |
| 4 |
1 2 3
|
syl3an12 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ∥ ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ∥ ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 6 |
5
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 8 |
7
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 9 |
6 8
|
absexpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |
| 10 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 11 |
10
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 12 |
11 8
|
absexpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) |
| 13 |
9 12
|
breq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) ∥ ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ∥ ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) |
| 14 |
4 13
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( abs ‘ 𝐴 ) ∥ ( abs ‘ 𝐵 ) ↔ ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) ∥ ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 15 |
|
absdvdsabsb |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ ( abs ‘ 𝐵 ) ) ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ ( abs ‘ 𝐵 ) ) ) |
| 17 |
5 8
|
zexpcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
| 18 |
10 8
|
zexpcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
| 19 |
|
absdvdsabsb |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) ∥ ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ↔ ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) ∥ ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 21 |
14 16 20
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |