Metamath Proof Explorer


Theorem absdvdsabsb

Description: Divisibility is invariant under taking the absolute value on both sides. (Contributed by SN, 15-Sep-2024)

Ref Expression
Assertion absdvdsabsb
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) )

Proof

Step Hyp Ref Expression
1 absdvdsb
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) )
2 zabscl
 |-  ( M e. ZZ -> ( abs ` M ) e. ZZ )
3 dvdsabsb
 |-  ( ( ( abs ` M ) e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) )
4 2 3 sylan
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) )
5 1 4 bitrd
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) )