| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qnumdencoprm |
|
| 2 |
1
|
adantr |
|
| 3 |
2
|
oveq1d |
|
| 4 |
|
qnumcl |
|
| 5 |
4
|
adantr |
|
| 6 |
|
qdencl |
|
| 7 |
6
|
adantr |
|
| 8 |
7
|
nnzd |
|
| 9 |
|
simpr |
|
| 10 |
|
zexpgcd |
|
| 11 |
5 8 9 10
|
syl3anc |
|
| 12 |
|
nn0z |
|
| 13 |
|
1exp |
|
| 14 |
9 12 13
|
3syl |
|
| 15 |
3 11 14
|
3eqtr3d |
|
| 16 |
|
qeqnumdivden |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
oveq1d |
|
| 19 |
5
|
zcnd |
|
| 20 |
7
|
nncnd |
|
| 21 |
7
|
nnne0d |
|
| 22 |
19 20 21 9
|
expdivd |
|
| 23 |
18 22
|
eqtrd |
|
| 24 |
|
qexpcl |
|
| 25 |
|
zexpcl |
|
| 26 |
4 25
|
sylan |
|
| 27 |
7 9
|
nnexpcld |
|
| 28 |
|
qnumdenbi |
|
| 29 |
24 26 27 28
|
syl3anc |
|
| 30 |
15 23 29
|
mpbi2and |
|