Metamath Proof Explorer


Theorem zexpgcd

Description: Exponentiation distributes over GCD. zgcdsq extended to nonnegative exponents. nn0expgcd extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion zexpgcd ABN0AgcdBN=ANgcdBN

Proof

Step Hyp Ref Expression
1 gcdabs ABAgcdB=AgcdB
2 1 3adant3 ABN0AgcdB=AgcdB
3 2 eqcomd ABN0AgcdB=AgcdB
4 3 oveq1d ABN0AgcdBN=AgcdBN
5 nn0abscl AA0
6 nn0abscl BB0
7 id N0N0
8 nn0expgcd A0B0N0AgcdBN=ANgcdBN
9 5 6 7 8 syl3an ABN0AgcdBN=ANgcdBN
10 zcn AA
11 10 3ad2ant1 ABN0A
12 simp3 ABN0N0
13 11 12 absexpd ABN0AN=AN
14 13 eqcomd ABN0AN=AN
15 zcn BB
16 15 3ad2ant2 ABN0B
17 16 12 absexpd ABN0BN=BN
18 17 eqcomd ABN0BN=BN
19 14 18 oveq12d ABN0ANgcdBN=ANgcdBN
20 zexpcl AN0AN
21 20 3adant2 ABN0AN
22 zexpcl BN0BN
23 22 3adant1 ABN0BN
24 gcdabs ANBNANgcdBN=ANgcdBN
25 21 23 24 syl2anc ABN0ANgcdBN=ANgcdBN
26 19 25 eqtrd ABN0ANgcdBN=ANgcdBN
27 4 9 26 3eqtrd ABN0AgcdBN=ANgcdBN