Step |
Hyp |
Ref |
Expression |
1 |
|
gcdabs |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) |
3 |
2
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) = ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ) |
4 |
3
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 𝑁 ) ) |
5 |
|
nn0abscl |
⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
6 |
|
nn0abscl |
⊢ ( 𝐵 ∈ ℤ → ( abs ‘ 𝐵 ) ∈ ℕ0 ) |
7 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
8 |
|
nn0expgcd |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ0 ∧ ( abs ‘ 𝐵 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 𝑁 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) |
9 |
5 6 7 8
|
syl3an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 𝑁 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) |
10 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
12 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
13 |
11 12
|
absexpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) = ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) ) |
15 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
17 |
16 12
|
absexpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) |
18 |
17
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) = ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) |
19 |
14 18
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) = ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) gcd ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) |
20 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
21 |
20
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
22 |
|
zexpcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
23 |
22
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
24 |
|
gcdabs |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) → ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) gcd ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) gcd ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
26 |
19 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
27 |
4 9 26
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |