Step |
Hyp |
Ref |
Expression |
1 |
|
qnumdencoprm |
⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) |
3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
4 |
|
qnumcl |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ 𝐴 ) ∈ ℤ ) |
6 |
|
qdencl |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℕ ) |
8 |
7
|
nnzd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℤ ) |
9 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
10 |
|
zexpgcd |
⊢ ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
11 |
5 8 9 10
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
12 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
13 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
14 |
9 12 13
|
3syl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 1 ↑ 𝑁 ) = 1 ) |
15 |
3 11 14
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ) |
16 |
|
qeqnumdivden |
⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
18 |
17
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
19 |
5
|
zcnd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ 𝐴 ) ∈ ℂ ) |
20 |
7
|
nncnd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℂ ) |
21 |
7
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ≠ 0 ) |
22 |
19 20 21 9
|
expdivd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
23 |
18 22
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
24 |
|
qexpcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℚ ) |
25 |
|
zexpcl |
⊢ ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ) |
26 |
4 25
|
sylan |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ) |
27 |
7 9
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℕ ) |
28 |
|
qnumdenbi |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℚ ∧ ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ∧ ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℕ ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ∧ ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ) |
29 |
24 26 27 28
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ∧ ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ) |
30 |
15 23 29
|
mpbi2and |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |