Metamath Proof Explorer


Theorem numdenexp

Description: numdensq extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numdenexp ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 qnumdencoprm ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 )
2 1 adantr ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 )
3 2 oveq1d ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) )
4 qnumcl ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ )
5 4 adantr ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ 𝐴 ) ∈ ℤ )
6 qdencl ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ )
7 6 adantr ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℕ )
8 7 nnzd ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℤ )
9 simpr ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 )
10 zexpgcd ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )
11 5 8 9 10 syl3anc ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )
12 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
13 1exp ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 )
14 9 12 13 3syl ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 1 ↑ 𝑁 ) = 1 )
15 3 11 14 3eqtr3d ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 )
16 qeqnumdivden ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) )
17 16 adantr ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) )
18 17 oveq1d ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) )
19 5 zcnd ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ 𝐴 ) ∈ ℂ )
20 7 nncnd ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℂ )
21 7 nnne0d ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ≠ 0 )
22 19 20 21 9 expdivd ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )
23 18 22 eqtrd ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )
24 qexpcl ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℚ )
25 zexpcl ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ )
26 4 25 sylan ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ )
27 7 9 nnexpcld ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℕ )
28 qnumdenbi ( ( ( 𝐴𝑁 ) ∈ ℚ ∧ ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ∧ ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℕ ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ∧ ( 𝐴𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ↔ ( ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) )
29 24 26 27 28 syl3anc ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ∧ ( 𝐴𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ↔ ( ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) )
30 15 23 29 mpbi2and ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) )