| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ) |
| 2 |
|
eqid |
⊢ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) |
| 3 |
1 2
|
jctir |
⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ∧ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) ) ) |
| 4 |
|
qnumcl |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 5 |
|
qdencl |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 6 |
|
qnumdenbi |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ∧ 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) ↔ ( ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ∧ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) ) ) ) |
| 7 |
4 5 6
|
mpd3an23 |
⊢ ( 𝐴 ∈ ℚ → ( ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ∧ 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) ↔ ( ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ∧ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) ) ) ) |
| 8 |
3 7
|
mpbird |
⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ∧ 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) ) |
| 9 |
8
|
simpld |
⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) |