| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdabs |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) |
| 2 |
1
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 2 ) ) |
| 4 |
|
nn0abscl |
⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 |
|
nn0abscl |
⊢ ( 𝐵 ∈ ℤ → ( abs ‘ 𝐵 ) ∈ ℕ0 ) |
| 6 |
|
nn0gcdsq |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ0 ∧ ( abs ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) ↑ 2 ) gcd ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( abs ‘ 𝐴 ) ↑ 2 ) gcd ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 8 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 10 |
|
absresq |
⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 12 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 14 |
|
absresq |
⊢ ( 𝐵 ∈ ℝ → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 16 |
11 15
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) gcd ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
| 17 |
3 7 16
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |