Metamath Proof Explorer


Theorem numexpp1

Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1
|- A e. NN0
numexpp1.2
|- M e. NN0
numexpp1.3
|- ( M + 1 ) = N
numexpp1.4
|- ( ( A ^ M ) x. A ) = C
Assertion numexpp1
|- ( A ^ N ) = C

Proof

Step Hyp Ref Expression
1 numexp.1
 |-  A e. NN0
2 numexpp1.2
 |-  M e. NN0
3 numexpp1.3
 |-  ( M + 1 ) = N
4 numexpp1.4
 |-  ( ( A ^ M ) x. A ) = C
5 1 nn0cni
 |-  A e. CC
6 expp1
 |-  ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 1 ) ) = ( ( A ^ M ) x. A ) )
7 5 2 6 mp2an
 |-  ( A ^ ( M + 1 ) ) = ( ( A ^ M ) x. A )
8 3 oveq2i
 |-  ( A ^ ( M + 1 ) ) = ( A ^ N )
9 7 8 4 3eqtr3i
 |-  ( A ^ N ) = C