Metamath Proof Explorer


Theorem numexpp1

Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1 A0
numexpp1.2 M0
numexpp1.3 M+1=N
numexpp1.4 AMA=C
Assertion numexpp1 AN=C

Proof

Step Hyp Ref Expression
1 numexp.1 A0
2 numexpp1.2 M0
3 numexpp1.3 M+1=N
4 numexpp1.4 AMA=C
5 1 nn0cni A
6 expp1 AM0AM+1=AMA
7 5 2 6 mp2an AM+1=AMA
8 3 oveq2i AM+1=AN
9 7 8 4 3eqtr3i AN=C