Metamath Proof Explorer


Theorem o1bddrp

Description: Refine o1bdd2 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypotheses o1bdd2.1
|- ( ph -> A C_ RR )
o1bdd2.2
|- ( ph -> C e. RR )
o1bdd2.3
|- ( ( ph /\ x e. A ) -> B e. CC )
o1bdd2.4
|- ( ph -> ( x e. A |-> B ) e. O(1) )
o1bdd2.5
|- ( ( ph /\ ( y e. RR /\ C <_ y ) ) -> M e. RR )
o1bdd2.6
|- ( ( ( ph /\ x e. A ) /\ ( ( y e. RR /\ C <_ y ) /\ x < y ) ) -> ( abs ` B ) <_ M )
Assertion o1bddrp
|- ( ph -> E. m e. RR+ A. x e. A ( abs ` B ) <_ m )

Proof

Step Hyp Ref Expression
1 o1bdd2.1
 |-  ( ph -> A C_ RR )
2 o1bdd2.2
 |-  ( ph -> C e. RR )
3 o1bdd2.3
 |-  ( ( ph /\ x e. A ) -> B e. CC )
4 o1bdd2.4
 |-  ( ph -> ( x e. A |-> B ) e. O(1) )
5 o1bdd2.5
 |-  ( ( ph /\ ( y e. RR /\ C <_ y ) ) -> M e. RR )
6 o1bdd2.6
 |-  ( ( ( ph /\ x e. A ) /\ ( ( y e. RR /\ C <_ y ) /\ x < y ) ) -> ( abs ` B ) <_ M )
7 3 abscld
 |-  ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR )
8 3 lo1o12
 |-  ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) )
9 4 8 mpbid
 |-  ( ph -> ( x e. A |-> ( abs ` B ) ) e. <_O(1) )
10 1 2 7 9 5 6 lo1bddrp
 |-  ( ph -> E. m e. RR+ A. x e. A ( abs ` B ) <_ m )