| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1bdd2.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
o1bdd2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 3 |
|
o1bdd2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
|
o1bdd2.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
| 5 |
|
o1bdd2.5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) |
| 6 |
|
o1bdd2.6 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ 𝐵 ) ≤ 𝑀 ) |
| 7 |
3
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 8 |
3
|
lo1o12 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
| 9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) |
| 10 |
1 2 7 9 5 6
|
lo1bddrp |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑚 ) |