Description: The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1div2z | |- ( Z e. Odd -> ( ( Z - 1 ) / 2 ) e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddp1div2z | |- ( Z e. Odd -> ( ( Z + 1 ) / 2 ) e. ZZ ) |
|
| 2 | oddz | |- ( Z e. Odd -> Z e. ZZ ) |
|
| 3 | zob | |- ( Z e. ZZ -> ( ( ( Z + 1 ) / 2 ) e. ZZ <-> ( ( Z - 1 ) / 2 ) e. ZZ ) ) |
|
| 4 | 2 3 | syl | |- ( Z e. Odd -> ( ( ( Z + 1 ) / 2 ) e. ZZ <-> ( ( Z - 1 ) / 2 ) e. ZZ ) ) |
| 5 | 1 4 | mpbid | |- ( Z e. Odd -> ( ( Z - 1 ) / 2 ) e. ZZ ) |