Description: The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1div2z | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddp1div2z | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) | |
| 2 | oddz | ⊢ ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ ) | |
| 3 | zob | ⊢ ( 𝑍 ∈ ℤ → ( ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑍 ∈ Odd → ( ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) ) |
| 5 | 1 4 | mpbid | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) |