Description: The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | oddm1div2z | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddp1div2z | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ) | |
2 | oddz | ⊢ ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ ) | |
3 | zob | ⊢ ( 𝑍 ∈ ℤ → ( ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) ) | |
4 | 2 3 | syl | ⊢ ( 𝑍 ∈ Odd → ( ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) ) |
5 | 1 4 | mpbid | ⊢ ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) |