Metamath Proof Explorer


Theorem oddm1div2z

Description: The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020)

Ref Expression
Assertion oddm1div2z ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 oddp1div2z ( 𝑍 ∈ Odd → ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ )
2 oddz ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ )
3 zob ( 𝑍 ∈ ℤ → ( ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) )
4 2 3 syl ( 𝑍 ∈ Odd → ( ( ( 𝑍 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ ) )
5 1 4 mpbid ( 𝑍 ∈ Odd → ( ( 𝑍 − 1 ) / 2 ) ∈ ℤ )