| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|- X = ( Base ` G ) |
| 2 |
|
odcl.2 |
|- O = ( od ` G ) |
| 3 |
|
c0ex |
|- 0 e. _V |
| 4 |
|
ltso |
|- < Or RR |
| 5 |
4
|
infex |
|- inf ( w , RR , < ) e. _V |
| 6 |
3 5
|
ifex |
|- if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V |
| 7 |
6
|
csbex |
|- [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V |
| 8 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 9 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 10 |
1 8 9 2
|
odfval |
|- O = ( y e. X |-> [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) ) |
| 11 |
7 10
|
fnmpti |
|- O Fn X |
| 12 |
1 2
|
odcl |
|- ( x e. X -> ( O ` x ) e. NN0 ) |
| 13 |
12
|
rgen |
|- A. x e. X ( O ` x ) e. NN0 |
| 14 |
|
ffnfv |
|- ( O : X --> NN0 <-> ( O Fn X /\ A. x e. X ( O ` x ) e. NN0 ) ) |
| 15 |
11 13 14
|
mpbir2an |
|- O : X --> NN0 |