Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
c0ex |
|- 0 e. _V |
4 |
|
ltso |
|- < Or RR |
5 |
4
|
infex |
|- inf ( w , RR , < ) e. _V |
6 |
3 5
|
ifex |
|- if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V |
7 |
6
|
csbex |
|- [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) e. _V |
8 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
9 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
10 |
1 8 9 2
|
odfval |
|- O = ( y e. X |-> [_ { z e. NN | ( z ( .g ` G ) y ) = ( 0g ` G ) } / w ]_ if ( w = (/) , 0 , inf ( w , RR , < ) ) ) |
11 |
7 10
|
fnmpti |
|- O Fn X |
12 |
1 2
|
odcl |
|- ( x e. X -> ( O ` x ) e. NN0 ) |
13 |
12
|
rgen |
|- A. x e. X ( O ` x ) e. NN0 |
14 |
|
ffnfv |
|- ( O : X --> NN0 <-> ( O Fn X /\ A. x e. X ( O ` x ) e. NN0 ) ) |
15 |
11 13 14
|
mpbir2an |
|- O : X --> NN0 |