Description: Two ways to square an ordinal. (Contributed by RP, 3-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oe2 | |- ( A e. On -> ( A .o A ) = ( A ^o 2o ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | |- 2o = suc 1o |
|
2 | 1 | oveq2i | |- ( A ^o 2o ) = ( A ^o suc 1o ) |
3 | 1on | |- 1o e. On |
|
4 | oesuc | |- ( ( A e. On /\ 1o e. On ) -> ( A ^o suc 1o ) = ( ( A ^o 1o ) .o A ) ) |
|
5 | 3 4 | mpan2 | |- ( A e. On -> ( A ^o suc 1o ) = ( ( A ^o 1o ) .o A ) ) |
6 | oe1 | |- ( A e. On -> ( A ^o 1o ) = A ) |
|
7 | 6 | oveq1d | |- ( A e. On -> ( ( A ^o 1o ) .o A ) = ( A .o A ) ) |
8 | 5 7 | eqtrd | |- ( A e. On -> ( A ^o suc 1o ) = ( A .o A ) ) |
9 | 2 8 | eqtr2id | |- ( A e. On -> ( A .o A ) = ( A ^o 2o ) ) |