Description: Two ways to square an ordinal. (Contributed by RP, 3-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 𝐴 ) = ( 𝐴 ↑o 2o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o | ⊢ 2o = suc 1o | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 ↑o 2o ) = ( 𝐴 ↑o suc 1o ) |
| 3 | 1on | ⊢ 1o ∈ On | |
| 4 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ↑o suc 1o ) = ( ( 𝐴 ↑o 1o ) ·o 𝐴 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o suc 1o ) = ( ( 𝐴 ↑o 1o ) ·o 𝐴 ) ) |
| 6 | oe1 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o 1o ) = 𝐴 ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ↑o 1o ) ·o 𝐴 ) = ( 𝐴 ·o 𝐴 ) ) |
| 8 | 5 7 | eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o suc 1o ) = ( 𝐴 ·o 𝐴 ) ) |
| 9 | 2 8 | eqtr2id | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 𝐴 ) = ( 𝐴 ↑o 2o ) ) |