Description: Two ways to square an ordinal. (Contributed by RP, 3-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oe2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 𝐴 ) = ( 𝐴 ↑o 2o ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | ⊢ 2o = suc 1o | |
2 | 1 | oveq2i | ⊢ ( 𝐴 ↑o 2o ) = ( 𝐴 ↑o suc 1o ) |
3 | 1on | ⊢ 1o ∈ On | |
4 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ↑o suc 1o ) = ( ( 𝐴 ↑o 1o ) ·o 𝐴 ) ) | |
5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o suc 1o ) = ( ( 𝐴 ↑o 1o ) ·o 𝐴 ) ) |
6 | oe1 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o 1o ) = 𝐴 ) | |
7 | 6 | oveq1d | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ↑o 1o ) ·o 𝐴 ) = ( 𝐴 ·o 𝐴 ) ) |
8 | 5 7 | eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o suc 1o ) = ( 𝐴 ·o 𝐴 ) ) |
9 | 2 8 | eqtr2id | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 𝐴 ) = ( 𝐴 ↑o 2o ) ) |