Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 𝐵 ∈ On ) |
3 |
|
oe2 |
⊢ ( 𝐵 ∈ On → ( 𝐵 ·o 𝐵 ) = ( 𝐵 ↑o 2o ) ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ·o 𝐵 ) = ( 𝐵 ↑o 2o ) ) |
5 |
|
2on |
⊢ 2o ∈ On |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 2o ∈ On ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
8 |
6 7 1
|
3jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) |
10 |
|
simpr |
⊢ ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
12 |
11
|
ne0d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 𝐵 ≠ ∅ ) |
13 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
14 |
2 13
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ∅ ∈ 𝐵 ) |
16 |
9 15
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) ) |
17 |
|
df-2o |
⊢ 2o = suc 1o |
18 |
17
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 2o = suc 1o ) |
19 |
|
simpl |
⊢ ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → 1o ∈ 𝐴 ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 1o ∈ 𝐴 ) |
21 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → Ord 𝐴 ) |
24 |
20 23
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) ) |
25 |
|
ordelsuc |
⊢ ( ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 ↔ suc 1o ⊆ 𝐴 ) ) |
26 |
25
|
biimpd |
⊢ ( ( 1o ∈ 𝐴 ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 → suc 1o ⊆ 𝐴 ) ) |
27 |
24 20 26
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → suc 1o ⊆ 𝐴 ) |
28 |
18 27
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → 2o ⊆ 𝐴 ) |
29 |
|
oewordi |
⊢ ( ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 2o ⊆ 𝐴 → ( 𝐵 ↑o 2o ) ⊆ ( 𝐵 ↑o 𝐴 ) ) ) |
30 |
16 28 29
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ↑o 2o ) ⊆ ( 𝐵 ↑o 𝐴 ) ) |
31 |
4 30
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ·o 𝐵 ) ⊆ ( 𝐵 ↑o 𝐴 ) ) |
32 |
2 2 15
|
jca31 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) ) |
33 |
|
omordi |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ∈ 𝐵 → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵 ·o 𝐵 ) ) ) |
34 |
32 11 33
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵 ·o 𝐵 ) ) |
35 |
31 34
|
sseldd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵 ↑o 𝐴 ) ) |
36 |
35
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵 ↑o 𝐴 ) ) ) |