Metamath Proof Explorer


Theorem omltoe

Description: Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion omltoe ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o𝐴𝐴𝐵 ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵o 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On )
2 1 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 𝐵 ∈ On )
3 oe2 ( 𝐵 ∈ On → ( 𝐵 ·o 𝐵 ) = ( 𝐵o 2o ) )
4 2 3 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 ·o 𝐵 ) = ( 𝐵o 2o ) )
5 2on 2o ∈ On
6 5 a1i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 2o ∈ On )
7 simpl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On )
8 6 7 1 3jca ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) )
9 8 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) )
10 simpr ( ( 1o𝐴𝐴𝐵 ) → 𝐴𝐵 )
11 10 adantl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 𝐴𝐵 )
12 11 ne0d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 𝐵 ≠ ∅ )
13 on0eln0 ( 𝐵 ∈ On → ( ∅ ∈ 𝐵𝐵 ≠ ∅ ) )
14 2 13 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( ∅ ∈ 𝐵𝐵 ≠ ∅ ) )
15 12 14 mpbird ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ∅ ∈ 𝐵 )
16 9 15 jca ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) )
17 df-2o 2o = suc 1o
18 17 a1i ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 2o = suc 1o )
19 simpl ( ( 1o𝐴𝐴𝐵 ) → 1o𝐴 )
20 19 adantl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 1o𝐴 )
21 eloni ( 𝐴 ∈ On → Ord 𝐴 )
22 21 adantr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord 𝐴 )
23 22 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → Ord 𝐴 )
24 20 23 jca ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 1o𝐴 ∧ Ord 𝐴 ) )
25 ordelsuc ( ( 1o𝐴 ∧ Ord 𝐴 ) → ( 1o𝐴 ↔ suc 1o𝐴 ) )
26 25 biimpd ( ( 1o𝐴 ∧ Ord 𝐴 ) → ( 1o𝐴 → suc 1o𝐴 ) )
27 24 20 26 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → suc 1o𝐴 )
28 18 27 eqsstrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → 2o𝐴 )
29 oewordi ( ( ( 2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 2o𝐴 → ( 𝐵o 2o ) ⊆ ( 𝐵o 𝐴 ) ) )
30 16 28 29 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵o 2o ) ⊆ ( 𝐵o 𝐴 ) )
31 4 30 eqsstrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 ·o 𝐵 ) ⊆ ( 𝐵o 𝐴 ) )
32 2 2 15 jca31 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) )
33 omordi ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴𝐵 → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵 ·o 𝐵 ) ) )
34 32 11 33 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵 ·o 𝐵 ) )
35 31 34 sseldd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 1o𝐴𝐴𝐵 ) ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵o 𝐴 ) )
36 35 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 1o𝐴𝐴𝐵 ) → ( 𝐵 ·o 𝐴 ) ∈ ( 𝐵o 𝐴 ) ) )