| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
| 2 |
|
ordgt0ge1 |
⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 ↔ 1o ⊆ 𝐶 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 1o ⊆ 𝐶 ) ) |
| 4 |
|
1on |
⊢ 1o ∈ On |
| 5 |
|
onsseleq |
⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ On ) → ( 1o ⊆ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝐶 ∈ On → ( 1o ⊆ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 7 |
3 6
|
bitrd |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 9 |
|
ondif2 |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) ↔ ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) ) |
| 10 |
|
oeword |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 11 |
10
|
biimpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 12 |
11
|
3expia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 13 |
9 12
|
biimtrrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 14 |
13
|
expd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 1o ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) ) |
| 15 |
14
|
3impia |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 16 |
|
oe1m |
⊢ ( 𝐴 ∈ On → ( 1o ↑o 𝐴 ) = 1o ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) = 1o ) |
| 18 |
|
oe1m |
⊢ ( 𝐵 ∈ On → ( 1o ↑o 𝐵 ) = 1o ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐵 ) = 1o ) |
| 20 |
17 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) = ( 1o ↑o 𝐵 ) ) |
| 21 |
|
eqimss |
⊢ ( ( 1o ↑o 𝐴 ) = ( 1o ↑o 𝐵 ) → ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ) |
| 23 |
|
oveq1 |
⊢ ( 1o = 𝐶 → ( 1o ↑o 𝐴 ) = ( 𝐶 ↑o 𝐴 ) ) |
| 24 |
|
oveq1 |
⊢ ( 1o = 𝐶 → ( 1o ↑o 𝐵 ) = ( 𝐶 ↑o 𝐵 ) ) |
| 25 |
23 24
|
sseq12d |
⊢ ( 1o = 𝐶 → ( ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 26 |
22 25
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o = 𝐶 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 28 |
27
|
a1dd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 29 |
15 28
|
jaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 30 |
8 29
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |