| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o ∅ ) ) |
| 3 |
1 2
|
sseq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o 𝑦 ) ) |
| 6 |
4 5
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o suc 𝑦 ) ) |
| 9 |
7 8
|
sseq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐶 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o 𝐶 ) ) |
| 12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
| 13 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
| 14 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) = 1o ) |
| 16 |
|
oe0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 ↑o ∅ ) = 1o ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ↑o ∅ ) = 1o ) |
| 18 |
15 17
|
eqtr4d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) = ( 𝐵 ↑o ∅ ) ) |
| 19 |
|
eqimss |
⊢ ( ( 𝐴 ↑o ∅ ) = ( 𝐵 ↑o ∅ ) → ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) |
| 21 |
|
simpl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ On ) |
| 22 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 24 |
13 21 23
|
jca31 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) ) |
| 25 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 26 |
25
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 27 |
|
oecl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o 𝑦 ) ∈ On ) |
| 28 |
27
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o 𝑦 ) ∈ On ) |
| 29 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → 𝐴 ∈ On ) |
| 30 |
|
omwordri |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ ( 𝐵 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 31 |
26 28 29 30
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 33 |
32
|
adantrl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 34 |
|
omwordi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐵 ↑o 𝑦 ) ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) ) |
| 35 |
28 34
|
syld3an3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 37 |
36
|
adantrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 38 |
33 37
|
sstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 39 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 40 |
39
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 42 |
|
oesuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 43 |
42
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 45 |
38 41 44
|
3sstr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) |
| 46 |
45
|
exp520 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) ) ) |
| 47 |
46
|
com3r |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) ) ) |
| 48 |
47
|
imp4c |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) |
| 49 |
24 48
|
syl5 |
⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) |
| 50 |
|
vex |
⊢ 𝑥 ∈ V |
| 51 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
| 52 |
50 51
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 53 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
| 54 |
|
oe0m1 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 56 |
52 53 55
|
syl2anc |
⊢ ( Lim 𝑥 → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 57 |
|
0ss |
⊢ ∅ ⊆ ( 𝐵 ↑o 𝑥 ) |
| 58 |
56 57
|
eqsstrdi |
⊢ ( Lim 𝑥 → ( ∅ ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( ∅ ↑o 𝑥 ) ) |
| 60 |
59
|
sseq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( ∅ ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 61 |
58 60
|
imbitrrid |
⊢ ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 63 |
62
|
a1dd |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 64 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 65 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 66 |
50 65
|
mpanlr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 67 |
66
|
an32s |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 68 |
67
|
adantllr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 69 |
21
|
anim1i |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) |
| 70 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ∅ ) |
| 71 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 72 |
70 71
|
imbitrrid |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ∅ ∈ 𝐵 ) ) |
| 73 |
72
|
imp |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ∅ ∈ 𝐵 ) |
| 74 |
73
|
adantr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ∅ ∈ 𝐵 ) |
| 75 |
|
oelim |
⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐵 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 76 |
50 75
|
mpanlr1 |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 77 |
69 74 76
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 78 |
77
|
ad4ant24 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 79 |
68 78
|
sseq12d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) ) |
| 80 |
64 79
|
imbitrrid |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 81 |
80
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 82 |
63 81
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 83 |
13
|
ancri |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ) |
| 84 |
82 83
|
syl11 |
⊢ ( Lim 𝑥 → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 85 |
3 6 9 12 20 49 84
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
| 86 |
85
|
expd |
⊢ ( 𝐶 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) ) |
| 87 |
86
|
impcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |