| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
| 3 |
1 2
|
sseq12d |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ⊆ ( 𝐴 ↑o ∅ ) ) ) |
| 4 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 6 |
4 5
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) ) ) |
| 7 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 9 |
7 8
|
sseq12d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 10 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 13 |
|
0ss |
⊢ ∅ ⊆ ( 𝐴 ↑o ∅ ) |
| 14 |
13
|
a1i |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ⊆ ( 𝐴 ↑o ∅ ) ) |
| 15 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
| 16 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
| 17 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 18 |
16 17
|
sylan |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 19 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → Ord ( 𝐴 ↑o 𝑦 ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → Ord ( 𝐴 ↑o 𝑦 ) ) |
| 21 |
|
ordsucsssuc |
⊢ ( ( Ord 𝑦 ∧ Ord ( 𝐴 ↑o 𝑦 ) ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) ↔ suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) ) ) |
| 22 |
15 20 21
|
syl2an2 |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) ↔ suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) ) ) |
| 23 |
|
onsuc |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
| 24 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) |
| 25 |
16 23 24
|
syl2an |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) |
| 26 |
|
eloni |
⊢ ( ( 𝐴 ↑o suc 𝑦 ) ∈ On → Ord ( 𝐴 ↑o suc 𝑦 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → Ord ( 𝐴 ↑o suc 𝑦 ) ) |
| 28 |
|
id |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ ( On ∖ 2o ) ) |
| 29 |
|
vex |
⊢ 𝑦 ∈ V |
| 30 |
29
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
| 31 |
|
oeordi |
⊢ ( ( suc 𝑦 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 32 |
30 31
|
mpi |
⊢ ( ( suc 𝑦 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) ) |
| 33 |
23 28 32
|
syl2anr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) ) |
| 34 |
|
ordsucss |
⊢ ( Ord ( 𝐴 ↑o suc 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o suc 𝑦 ) → suc ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 35 |
27 33 34
|
sylc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → suc ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) |
| 36 |
|
sstr2 |
⊢ ( suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) → ( suc ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 37 |
35 36
|
syl5com |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( suc 𝑦 ⊆ suc ( 𝐴 ↑o 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 38 |
22 37
|
sylbid |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 39 |
38
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ ( On ∖ 2o ) → ( 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → suc 𝑦 ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 40 |
|
dif20el |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) |
| 41 |
16 40
|
jca |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) |
| 42 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 𝑦 ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 43 |
|
limuni |
⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) |
| 44 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
| 45 |
43 44
|
eqtrdi |
⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
| 46 |
45
|
adantr |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
| 47 |
|
vex |
⊢ 𝑥 ∈ V |
| 48 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 49 |
47 48
|
mpanlr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 50 |
49
|
anasss |
⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 51 |
50
|
an12s |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 52 |
46 51
|
sseq12d |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 𝑦 ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) ) |
| 53 |
42 52
|
imbitrrid |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 54 |
53
|
ex |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 55 |
41 54
|
syl5 |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ ( On ∖ 2o ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( 𝐴 ↑o 𝑦 ) → 𝑥 ⊆ ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 56 |
3 6 9 12 14 39 55
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( On ∖ 2o ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) ) |
| 57 |
56
|
impcom |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → 𝐵 ⊆ ( 𝐴 ↑o 𝐵 ) ) |