| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝐴 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o suc 𝐴 ) ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o 𝑦 ) ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o suc 𝑦 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o 𝐵 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 13 |
|
eldifi |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) → 𝐶 ∈ On ) |
| 14 |
|
oecl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ On ) |
| 15 |
13 14
|
sylan |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ On ) |
| 16 |
|
om1 |
⊢ ( ( 𝐶 ↑o 𝐴 ) ∈ On → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) = ( 𝐶 ↑o 𝐴 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) = ( 𝐶 ↑o 𝐴 ) ) |
| 18 |
|
ondif2 |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) ↔ ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) ) |
| 19 |
18
|
simprbi |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) → 1o ∈ 𝐶 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 1o ∈ 𝐶 ) |
| 21 |
13
|
adantr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐶 ∈ On ) |
| 22 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐴 ∈ On ) |
| 23 |
|
dif20el |
⊢ ( 𝐶 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐶 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ∅ ∈ 𝐶 ) |
| 25 |
|
oen0 |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ∅ ∈ ( 𝐶 ↑o 𝐴 ) ) |
| 26 |
21 22 24 25
|
syl21anc |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ∅ ∈ ( 𝐶 ↑o 𝐴 ) ) |
| 27 |
|
omordi |
⊢ ( ( ( 𝐶 ∈ On ∧ ( 𝐶 ↑o 𝐴 ) ∈ On ) ∧ ∅ ∈ ( 𝐶 ↑o 𝐴 ) ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) ) |
| 28 |
21 15 26 27
|
syl21anc |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) ) |
| 29 |
20 28
|
mpd |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 30 |
17 29
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 31 |
|
oesuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o suc 𝐴 ) = ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 32 |
13 31
|
sylan |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o suc 𝐴 ) = ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 33 |
30 32
|
eleqtrrd |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) |
| 34 |
33
|
expcom |
⊢ ( 𝐴 ∈ On → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 35 |
|
oecl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ On ) |
| 36 |
13 35
|
sylan |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ On ) |
| 37 |
|
om1 |
⊢ ( ( 𝐶 ↑o 𝑦 ) ∈ On → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) = ( 𝐶 ↑o 𝑦 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) = ( 𝐶 ↑o 𝑦 ) ) |
| 39 |
19
|
adantr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → 1o ∈ 𝐶 ) |
| 40 |
13
|
adantr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → 𝐶 ∈ On ) |
| 41 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → 𝑦 ∈ On ) |
| 42 |
23
|
adantr |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ∅ ∈ 𝐶 ) |
| 43 |
|
oen0 |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ∅ ∈ ( 𝐶 ↑o 𝑦 ) ) |
| 44 |
40 41 42 43
|
syl21anc |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ∅ ∈ ( 𝐶 ↑o 𝑦 ) ) |
| 45 |
|
omordi |
⊢ ( ( ( 𝐶 ∈ On ∧ ( 𝐶 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) ) |
| 46 |
40 36 44 45
|
syl21anc |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) ) |
| 47 |
39 46
|
mpd |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 48 |
38 47
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 49 |
|
oesuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) = ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 50 |
13 49
|
sylan |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) = ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 51 |
48 50
|
eleqtrrd |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) |
| 52 |
|
onsuc |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
| 53 |
|
oecl |
⊢ ( ( 𝐶 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) ∈ On ) |
| 54 |
13 52 53
|
syl2an |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) ∈ On ) |
| 55 |
|
ontr1 |
⊢ ( ( 𝐶 ↑o suc 𝑦 ) ∈ On → ( ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ∧ ( 𝐶 ↑o 𝑦 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ∧ ( 𝐶 ↑o 𝑦 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 57 |
51 56
|
mpan2d |
⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 58 |
57
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐶 ∈ ( On ∖ 2o ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ 𝑦 ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 60 |
59
|
a2d |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ 𝑦 ) → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 61 |
|
bi2.04 |
⊢ ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 62 |
61
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 63 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 64 |
62 63
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 65 |
|
limsuc |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) |
| 66 |
65
|
biimpa |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → suc 𝐴 ∈ 𝑥 ) |
| 67 |
|
elex |
⊢ ( suc 𝐴 ∈ 𝑥 → suc 𝐴 ∈ V ) |
| 68 |
|
sucexb |
⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |
| 69 |
|
sucidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) |
| 70 |
68 69
|
sylbir |
⊢ ( suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) |
| 71 |
67 70
|
syl |
⊢ ( suc 𝐴 ∈ 𝑥 → 𝐴 ∈ suc 𝐴 ) |
| 72 |
|
eleq2 |
⊢ ( 𝑦 = suc 𝐴 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ suc 𝐴 ) ) |
| 73 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝐴 → ( 𝐶 ↑o 𝑦 ) = ( 𝐶 ↑o suc 𝐴 ) ) |
| 74 |
73
|
eleq2d |
⊢ ( 𝑦 = suc 𝐴 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 75 |
72 74
|
imbi12d |
⊢ ( 𝑦 = suc 𝐴 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ↔ ( 𝐴 ∈ suc 𝐴 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 76 |
75
|
rspcv |
⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐴 ∈ suc 𝐴 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 77 |
71 76
|
mpid |
⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 78 |
77
|
anc2li |
⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( suc 𝐴 ∈ 𝑥 ∧ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 79 |
73
|
eliuni |
⊢ ( ( suc 𝐴 ∈ 𝑥 ∧ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 80 |
78 79
|
syl6 |
⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 81 |
66 80
|
syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 82 |
81
|
adantr |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 83 |
13
|
adantl |
⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → 𝐶 ∈ On ) |
| 84 |
|
simpl |
⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → Lim 𝑥 ) |
| 85 |
23
|
adantl |
⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ∅ ∈ 𝐶 ) |
| 86 |
|
vex |
⊢ 𝑥 ∈ V |
| 87 |
|
oelim |
⊢ ( ( ( 𝐶 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 88 |
86 87
|
mpanlr1 |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 89 |
83 84 85 88
|
syl21anc |
⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 90 |
89
|
adantlr |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 91 |
90
|
eleq2d |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 92 |
82 91
|
sylibrd |
⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) |
| 93 |
92
|
ex |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) ) |
| 94 |
93
|
a2d |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ( 𝐶 ∈ ( On ∖ 2o ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) ) |
| 95 |
64 94
|
biimtrid |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) ) |
| 96 |
3 6 9 12 34 60 95
|
tfindsg2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |
| 97 |
96
|
impancom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |