Metamath Proof Explorer


Theorem oeordi

Description: Ordering law for ordinal exponentiation. Proposition 8.33 of TakeutiZaring p. 67. (Contributed by NM, 5-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)

Ref Expression
Assertion oeordi BOnCOn2𝑜ABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 oveq2 x=sucAC𝑜x=C𝑜sucA
2 1 eleq2d x=sucAC𝑜AC𝑜xC𝑜AC𝑜sucA
3 2 imbi2d x=sucACOn2𝑜C𝑜AC𝑜xCOn2𝑜C𝑜AC𝑜sucA
4 oveq2 x=yC𝑜x=C𝑜y
5 4 eleq2d x=yC𝑜AC𝑜xC𝑜AC𝑜y
6 5 imbi2d x=yCOn2𝑜C𝑜AC𝑜xCOn2𝑜C𝑜AC𝑜y
7 oveq2 x=sucyC𝑜x=C𝑜sucy
8 7 eleq2d x=sucyC𝑜AC𝑜xC𝑜AC𝑜sucy
9 8 imbi2d x=sucyCOn2𝑜C𝑜AC𝑜xCOn2𝑜C𝑜AC𝑜sucy
10 oveq2 x=BC𝑜x=C𝑜B
11 10 eleq2d x=BC𝑜AC𝑜xC𝑜AC𝑜B
12 11 imbi2d x=BCOn2𝑜C𝑜AC𝑜xCOn2𝑜C𝑜AC𝑜B
13 eldifi COn2𝑜COn
14 oecl COnAOnC𝑜AOn
15 13 14 sylan COn2𝑜AOnC𝑜AOn
16 om1 C𝑜AOnC𝑜A𝑜1𝑜=C𝑜A
17 15 16 syl COn2𝑜AOnC𝑜A𝑜1𝑜=C𝑜A
18 ondif2 COn2𝑜COn1𝑜C
19 18 simprbi COn2𝑜1𝑜C
20 19 adantr COn2𝑜AOn1𝑜C
21 13 adantr COn2𝑜AOnCOn
22 simpr COn2𝑜AOnAOn
23 dif20el COn2𝑜C
24 23 adantr COn2𝑜AOnC
25 oen0 COnAOnCC𝑜A
26 21 22 24 25 syl21anc COn2𝑜AOnC𝑜A
27 omordi COnC𝑜AOnC𝑜A1𝑜CC𝑜A𝑜1𝑜C𝑜A𝑜C
28 21 15 26 27 syl21anc COn2𝑜AOn1𝑜CC𝑜A𝑜1𝑜C𝑜A𝑜C
29 20 28 mpd COn2𝑜AOnC𝑜A𝑜1𝑜C𝑜A𝑜C
30 17 29 eqeltrrd COn2𝑜AOnC𝑜AC𝑜A𝑜C
31 oesuc COnAOnC𝑜sucA=C𝑜A𝑜C
32 13 31 sylan COn2𝑜AOnC𝑜sucA=C𝑜A𝑜C
33 30 32 eleqtrrd COn2𝑜AOnC𝑜AC𝑜sucA
34 33 expcom AOnCOn2𝑜C𝑜AC𝑜sucA
35 oecl COnyOnC𝑜yOn
36 13 35 sylan COn2𝑜yOnC𝑜yOn
37 om1 C𝑜yOnC𝑜y𝑜1𝑜=C𝑜y
38 36 37 syl COn2𝑜yOnC𝑜y𝑜1𝑜=C𝑜y
39 19 adantr COn2𝑜yOn1𝑜C
40 13 adantr COn2𝑜yOnCOn
41 simpr COn2𝑜yOnyOn
42 23 adantr COn2𝑜yOnC
43 oen0 COnyOnCC𝑜y
44 40 41 42 43 syl21anc COn2𝑜yOnC𝑜y
45 omordi COnC𝑜yOnC𝑜y1𝑜CC𝑜y𝑜1𝑜C𝑜y𝑜C
46 40 36 44 45 syl21anc COn2𝑜yOn1𝑜CC𝑜y𝑜1𝑜C𝑜y𝑜C
47 39 46 mpd COn2𝑜yOnC𝑜y𝑜1𝑜C𝑜y𝑜C
48 38 47 eqeltrrd COn2𝑜yOnC𝑜yC𝑜y𝑜C
49 oesuc COnyOnC𝑜sucy=C𝑜y𝑜C
50 13 49 sylan COn2𝑜yOnC𝑜sucy=C𝑜y𝑜C
51 48 50 eleqtrrd COn2𝑜yOnC𝑜yC𝑜sucy
52 onsuc yOnsucyOn
53 oecl COnsucyOnC𝑜sucyOn
54 13 52 53 syl2an COn2𝑜yOnC𝑜sucyOn
55 ontr1 C𝑜sucyOnC𝑜AC𝑜yC𝑜yC𝑜sucyC𝑜AC𝑜sucy
56 54 55 syl COn2𝑜yOnC𝑜AC𝑜yC𝑜yC𝑜sucyC𝑜AC𝑜sucy
57 51 56 mpan2d COn2𝑜yOnC𝑜AC𝑜yC𝑜AC𝑜sucy
58 57 expcom yOnCOn2𝑜C𝑜AC𝑜yC𝑜AC𝑜sucy
59 58 adantr yOnAyCOn2𝑜C𝑜AC𝑜yC𝑜AC𝑜sucy
60 59 a2d yOnAyCOn2𝑜C𝑜AC𝑜yCOn2𝑜C𝑜AC𝑜sucy
61 bi2.04 AyCOn2𝑜C𝑜AC𝑜yCOn2𝑜AyC𝑜AC𝑜y
62 61 ralbii yxAyCOn2𝑜C𝑜AC𝑜yyxCOn2𝑜AyC𝑜AC𝑜y
63 r19.21v yxCOn2𝑜AyC𝑜AC𝑜yCOn2𝑜yxAyC𝑜AC𝑜y
64 62 63 bitri yxAyCOn2𝑜C𝑜AC𝑜yCOn2𝑜yxAyC𝑜AC𝑜y
65 limsuc LimxAxsucAx
66 65 biimpa LimxAxsucAx
67 elex sucAxsucAV
68 sucexb AVsucAV
69 sucidg AVAsucA
70 68 69 sylbir sucAVAsucA
71 67 70 syl sucAxAsucA
72 eleq2 y=sucAAyAsucA
73 oveq2 y=sucAC𝑜y=C𝑜sucA
74 73 eleq2d y=sucAC𝑜AC𝑜yC𝑜AC𝑜sucA
75 72 74 imbi12d y=sucAAyC𝑜AC𝑜yAsucAC𝑜AC𝑜sucA
76 75 rspcv sucAxyxAyC𝑜AC𝑜yAsucAC𝑜AC𝑜sucA
77 71 76 mpid sucAxyxAyC𝑜AC𝑜yC𝑜AC𝑜sucA
78 77 anc2li sucAxyxAyC𝑜AC𝑜ysucAxC𝑜AC𝑜sucA
79 73 eliuni sucAxC𝑜AC𝑜sucAC𝑜AyxC𝑜y
80 78 79 syl6 sucAxyxAyC𝑜AC𝑜yC𝑜AyxC𝑜y
81 66 80 syl LimxAxyxAyC𝑜AC𝑜yC𝑜AyxC𝑜y
82 81 adantr LimxAxCOn2𝑜yxAyC𝑜AC𝑜yC𝑜AyxC𝑜y
83 13 adantl LimxCOn2𝑜COn
84 simpl LimxCOn2𝑜Limx
85 23 adantl LimxCOn2𝑜C
86 vex xV
87 oelim COnxVLimxCC𝑜x=yxC𝑜y
88 86 87 mpanlr1 COnLimxCC𝑜x=yxC𝑜y
89 83 84 85 88 syl21anc LimxCOn2𝑜C𝑜x=yxC𝑜y
90 89 adantlr LimxAxCOn2𝑜C𝑜x=yxC𝑜y
91 90 eleq2d LimxAxCOn2𝑜C𝑜AC𝑜xC𝑜AyxC𝑜y
92 82 91 sylibrd LimxAxCOn2𝑜yxAyC𝑜AC𝑜yC𝑜AC𝑜x
93 92 ex LimxAxCOn2𝑜yxAyC𝑜AC𝑜yC𝑜AC𝑜x
94 93 a2d LimxAxCOn2𝑜yxAyC𝑜AC𝑜yCOn2𝑜C𝑜AC𝑜x
95 64 94 biimtrid LimxAxyxAyCOn2𝑜C𝑜AC𝑜yCOn2𝑜C𝑜AC𝑜x
96 3 6 9 12 34 60 95 tfindsg2 BOnABCOn2𝑜C𝑜AC𝑜B
97 96 impancom BOnCOn2𝑜ABC𝑜AC𝑜B