Metamath Proof Explorer


Theorem ondif2

Description: Two ways to say that A is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015)

Ref Expression
Assertion ondif2 AOn2𝑜AOn1𝑜A

Proof

Step Hyp Ref Expression
1 eldif AOn2𝑜AOn¬A2𝑜
2 1on 1𝑜On
3 ontri1 AOn1𝑜OnA1𝑜¬1𝑜A
4 onsssuc AOn1𝑜OnA1𝑜Asuc1𝑜
5 df-2o 2𝑜=suc1𝑜
6 5 eleq2i A2𝑜Asuc1𝑜
7 4 6 bitr4di AOn1𝑜OnA1𝑜A2𝑜
8 3 7 bitr3d AOn1𝑜On¬1𝑜AA2𝑜
9 2 8 mpan2 AOn¬1𝑜AA2𝑜
10 9 con1bid AOn¬A2𝑜1𝑜A
11 10 pm5.32i AOn¬A2𝑜AOn1𝑜A
12 1 11 bitri AOn2𝑜AOn1𝑜A