| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o ∅ ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 9 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 10 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
| 11 |
9 10
|
eleqtrrid |
⊢ ( 𝐴 ∈ On → ∅ ∈ ( 𝐴 ↑o ∅ ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o ∅ ) ) |
| 13 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 14 |
|
omordi |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 15 |
|
om0 |
⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) = ∅ ) |
| 16 |
15
|
eleq1d |
⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 17 |
16
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ( ( 𝐴 ↑o 𝑦 ) ·o ∅ ) ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 18 |
14 17
|
sylibd |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 19 |
13 18
|
syldanl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 20 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 21 |
20
|
eleq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ↔ ∅ ∈ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 23 |
19 22
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o 𝑦 ) ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 24 |
23
|
exp31 |
⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ On → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) ) |
| 25 |
24
|
com12 |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) ) |
| 26 |
25
|
com34 |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) ) |
| 27 |
26
|
impd |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ∅ ∈ ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 28 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
| 29 |
|
eqimss2 |
⊢ ( ( 𝐴 ↑o ∅ ) = 1o → 1o ⊆ ( 𝐴 ↑o ∅ ) ) |
| 30 |
10 29
|
syl |
⊢ ( 𝐴 ∈ On → 1o ⊆ ( 𝐴 ↑o ∅ ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐴 ↑o 𝑦 ) = ( 𝐴 ↑o ∅ ) ) |
| 32 |
31
|
sseq2d |
⊢ ( 𝑦 = ∅ → ( 1o ⊆ ( 𝐴 ↑o 𝑦 ) ↔ 1o ⊆ ( 𝐴 ↑o ∅ ) ) ) |
| 33 |
32
|
rspcev |
⊢ ( ( ∅ ∈ 𝑥 ∧ 1o ⊆ ( 𝐴 ↑o ∅ ) ) → ∃ 𝑦 ∈ 𝑥 1o ⊆ ( 𝐴 ↑o 𝑦 ) ) |
| 34 |
28 30 33
|
syl2an |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ∃ 𝑦 ∈ 𝑥 1o ⊆ ( 𝐴 ↑o 𝑦 ) ) |
| 35 |
|
ssiun |
⊢ ( ∃ 𝑦 ∈ 𝑥 1o ⊆ ( 𝐴 ↑o 𝑦 ) → 1o ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → 1o ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 37 |
36
|
adantrr |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → 1o ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 38 |
|
vex |
⊢ 𝑥 ∈ V |
| 39 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 40 |
38 39
|
mpanlr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 41 |
40
|
anasss |
⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 42 |
41
|
an12s |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 43 |
37 42
|
sseqtrrd |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) |
| 44 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
| 45 |
38 44
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 46 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
| 47 |
46
|
ancoms |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
| 48 |
45 47
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
| 49 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝑥 ) ∈ On → Ord ( 𝐴 ↑o 𝑥 ) ) |
| 50 |
|
ordgt0ge1 |
⊢ ( Ord ( 𝐴 ↑o 𝑥 ) → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 51 |
48 49 50
|
3syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 52 |
51
|
adantrr |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∅ ∈ ( 𝐴 ↑o 𝑥 ) ↔ 1o ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 53 |
43 52
|
mpbird |
⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ∅ ∈ ( 𝐴 ↑o 𝑥 ) ) |
| 54 |
53
|
ex |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝑥 ) ) ) |
| 55 |
54
|
a1dd |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ∅ ∈ ( 𝐴 ↑o 𝑦 ) → ∅ ∈ ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 56 |
2 4 6 8 12 27 55
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 57 |
56
|
expd |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 58 |
57
|
com12 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 59 |
58
|
imp31 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |