Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of TakeutiZaring p. 68. Lemma 3.20 of Schloeder p. 10. (Contributed by NM, 7-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oeworde | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | oveq2 | |
|
3 | 1 2 | sseq12d | |
4 | id | |
|
5 | oveq2 | |
|
6 | 4 5 | sseq12d | |
7 | id | |
|
8 | oveq2 | |
|
9 | 7 8 | sseq12d | |
10 | id | |
|
11 | oveq2 | |
|
12 | 10 11 | sseq12d | |
13 | 0ss | |
|
14 | 13 | a1i | |
15 | eloni | |
|
16 | eldifi | |
|
17 | oecl | |
|
18 | 16 17 | sylan | |
19 | eloni | |
|
20 | 18 19 | syl | |
21 | ordsucsssuc | |
|
22 | 15 20 21 | syl2an2 | |
23 | onsuc | |
|
24 | oecl | |
|
25 | 16 23 24 | syl2an | |
26 | eloni | |
|
27 | 25 26 | syl | |
28 | id | |
|
29 | vex | |
|
30 | 29 | sucid | |
31 | oeordi | |
|
32 | 30 31 | mpi | |
33 | 23 28 32 | syl2anr | |
34 | ordsucss | |
|
35 | 27 33 34 | sylc | |
36 | sstr2 | |
|
37 | 35 36 | syl5com | |
38 | 22 37 | sylbid | |
39 | 38 | expcom | |
40 | dif20el | |
|
41 | 16 40 | jca | |
42 | ss2iun | |
|
43 | limuni | |
|
44 | uniiun | |
|
45 | 43 44 | eqtrdi | |
46 | 45 | adantr | |
47 | vex | |
|
48 | oelim | |
|
49 | 47 48 | mpanlr1 | |
50 | 49 | anasss | |
51 | 50 | an12s | |
52 | 46 51 | sseq12d | |
53 | 42 52 | imbitrrid | |
54 | 53 | ex | |
55 | 41 54 | syl5 | |
56 | 3 6 9 12 14 39 55 | tfinds3 | |
57 | 56 | impcom | |