Metamath Proof Explorer


Theorem oeworde

Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of TakeutiZaring p. 68. Lemma 3.20 of Schloeder p. 10. (Contributed by NM, 7-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)

Ref Expression
Assertion oeworde AOn2𝑜BOnBA𝑜B

Proof

Step Hyp Ref Expression
1 id x=x=
2 oveq2 x=A𝑜x=A𝑜
3 1 2 sseq12d x=xA𝑜xA𝑜
4 id x=yx=y
5 oveq2 x=yA𝑜x=A𝑜y
6 4 5 sseq12d x=yxA𝑜xyA𝑜y
7 id x=sucyx=sucy
8 oveq2 x=sucyA𝑜x=A𝑜sucy
9 7 8 sseq12d x=sucyxA𝑜xsucyA𝑜sucy
10 id x=Bx=B
11 oveq2 x=BA𝑜x=A𝑜B
12 10 11 sseq12d x=BxA𝑜xBA𝑜B
13 0ss A𝑜
14 13 a1i AOn2𝑜A𝑜
15 eloni yOnOrdy
16 eldifi AOn2𝑜AOn
17 oecl AOnyOnA𝑜yOn
18 16 17 sylan AOn2𝑜yOnA𝑜yOn
19 eloni A𝑜yOnOrdA𝑜y
20 18 19 syl AOn2𝑜yOnOrdA𝑜y
21 ordsucsssuc OrdyOrdA𝑜yyA𝑜ysucysucA𝑜y
22 15 20 21 syl2an2 AOn2𝑜yOnyA𝑜ysucysucA𝑜y
23 onsuc yOnsucyOn
24 oecl AOnsucyOnA𝑜sucyOn
25 16 23 24 syl2an AOn2𝑜yOnA𝑜sucyOn
26 eloni A𝑜sucyOnOrdA𝑜sucy
27 25 26 syl AOn2𝑜yOnOrdA𝑜sucy
28 id AOn2𝑜AOn2𝑜
29 vex yV
30 29 sucid ysucy
31 oeordi sucyOnAOn2𝑜ysucyA𝑜yA𝑜sucy
32 30 31 mpi sucyOnAOn2𝑜A𝑜yA𝑜sucy
33 23 28 32 syl2anr AOn2𝑜yOnA𝑜yA𝑜sucy
34 ordsucss OrdA𝑜sucyA𝑜yA𝑜sucysucA𝑜yA𝑜sucy
35 27 33 34 sylc AOn2𝑜yOnsucA𝑜yA𝑜sucy
36 sstr2 sucysucA𝑜ysucA𝑜yA𝑜sucysucyA𝑜sucy
37 35 36 syl5com AOn2𝑜yOnsucysucA𝑜ysucyA𝑜sucy
38 22 37 sylbid AOn2𝑜yOnyA𝑜ysucyA𝑜sucy
39 38 expcom yOnAOn2𝑜yA𝑜ysucyA𝑜sucy
40 dif20el AOn2𝑜A
41 16 40 jca AOn2𝑜AOnA
42 ss2iun yxyA𝑜yyxyyxA𝑜y
43 limuni Limxx=x
44 uniiun x=yxy
45 43 44 eqtrdi Limxx=yxy
46 45 adantr LimxAOnAx=yxy
47 vex xV
48 oelim AOnxVLimxAA𝑜x=yxA𝑜y
49 47 48 mpanlr1 AOnLimxAA𝑜x=yxA𝑜y
50 49 anasss AOnLimxAA𝑜x=yxA𝑜y
51 50 an12s LimxAOnAA𝑜x=yxA𝑜y
52 46 51 sseq12d LimxAOnAxA𝑜xyxyyxA𝑜y
53 42 52 imbitrrid LimxAOnAyxyA𝑜yxA𝑜x
54 53 ex LimxAOnAyxyA𝑜yxA𝑜x
55 41 54 syl5 LimxAOn2𝑜yxyA𝑜yxA𝑜x
56 3 6 9 12 14 39 55 tfinds3 BOnAOn2𝑜BA𝑜B
57 56 impcom AOn2𝑜BOnBA𝑜B