Metamath Proof Explorer


Theorem oeordsuc

Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of TakeutiZaring p. 68. (Contributed by NM, 7-Jan-2005)

Ref Expression
Assertion oeordsuc BOnCOnABA𝑜sucCB𝑜sucC

Proof

Step Hyp Ref Expression
1 onelon BOnABAOn
2 1 ex BOnABAOn
3 2 adantr BOnCOnABAOn
4 oewordri BOnCOnABA𝑜CB𝑜C
5 4 3adant1 AOnBOnCOnABA𝑜CB𝑜C
6 oecl AOnCOnA𝑜COn
7 6 3adant2 AOnBOnCOnA𝑜COn
8 oecl BOnCOnB𝑜COn
9 8 3adant1 AOnBOnCOnB𝑜COn
10 simp1 AOnBOnCOnAOn
11 omwordri A𝑜COnB𝑜COnAOnA𝑜CB𝑜CA𝑜C𝑜AB𝑜C𝑜A
12 7 9 10 11 syl3anc AOnBOnCOnA𝑜CB𝑜CA𝑜C𝑜AB𝑜C𝑜A
13 5 12 syld AOnBOnCOnABA𝑜C𝑜AB𝑜C𝑜A
14 oesuc AOnCOnA𝑜sucC=A𝑜C𝑜A
15 14 3adant2 AOnBOnCOnA𝑜sucC=A𝑜C𝑜A
16 15 sseq1d AOnBOnCOnA𝑜sucCB𝑜C𝑜AA𝑜C𝑜AB𝑜C𝑜A
17 13 16 sylibrd AOnBOnCOnABA𝑜sucCB𝑜C𝑜A
18 ne0i ABB
19 on0eln0 BOnBB
20 18 19 imbitrrid BOnABB
21 20 adantr BOnCOnABB
22 oen0 BOnCOnBB𝑜C
23 22 ex BOnCOnBB𝑜C
24 21 23 syld BOnCOnABB𝑜C
25 omordi BOnB𝑜COnB𝑜CABB𝑜C𝑜AB𝑜C𝑜B
26 8 25 syldanl BOnCOnB𝑜CABB𝑜C𝑜AB𝑜C𝑜B
27 26 ex BOnCOnB𝑜CABB𝑜C𝑜AB𝑜C𝑜B
28 27 com23 BOnCOnABB𝑜CB𝑜C𝑜AB𝑜C𝑜B
29 24 28 mpdd BOnCOnABB𝑜C𝑜AB𝑜C𝑜B
30 29 3adant1 AOnBOnCOnABB𝑜C𝑜AB𝑜C𝑜B
31 oesuc BOnCOnB𝑜sucC=B𝑜C𝑜B
32 31 3adant1 AOnBOnCOnB𝑜sucC=B𝑜C𝑜B
33 32 eleq2d AOnBOnCOnB𝑜C𝑜AB𝑜sucCB𝑜C𝑜AB𝑜C𝑜B
34 30 33 sylibrd AOnBOnCOnABB𝑜C𝑜AB𝑜sucC
35 17 34 jcad AOnBOnCOnABA𝑜sucCB𝑜C𝑜AB𝑜C𝑜AB𝑜sucC
36 35 3expa AOnBOnCOnABA𝑜sucCB𝑜C𝑜AB𝑜C𝑜AB𝑜sucC
37 onsucb COnsucCOn
38 oecl AOnsucCOnA𝑜sucCOn
39 oecl BOnsucCOnB𝑜sucCOn
40 ontr2 A𝑜sucCOnB𝑜sucCOnA𝑜sucCB𝑜C𝑜AB𝑜C𝑜AB𝑜sucCA𝑜sucCB𝑜sucC
41 38 39 40 syl2an AOnsucCOnBOnsucCOnA𝑜sucCB𝑜C𝑜AB𝑜C𝑜AB𝑜sucCA𝑜sucCB𝑜sucC
42 41 anandirs AOnBOnsucCOnA𝑜sucCB𝑜C𝑜AB𝑜C𝑜AB𝑜sucCA𝑜sucCB𝑜sucC
43 37 42 sylan2b AOnBOnCOnA𝑜sucCB𝑜C𝑜AB𝑜C𝑜AB𝑜sucCA𝑜sucCB𝑜sucC
44 36 43 syld AOnBOnCOnABA𝑜sucCB𝑜sucC
45 44 exp31 AOnBOnCOnABA𝑜sucCB𝑜sucC
46 45 com4l BOnCOnABAOnA𝑜sucCB𝑜sucC
47 46 imp BOnCOnABAOnA𝑜sucCB𝑜sucC
48 3 47 mpdd BOnCOnABA𝑜sucCB𝑜sucC