| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limelon |
|
| 2 |
|
0ellim |
|
| 3 |
2
|
adantl |
|
| 4 |
|
oe0m1 |
|
| 5 |
4
|
biimpa |
|
| 6 |
1 3 5
|
syl2anc |
|
| 7 |
|
eldif |
|
| 8 |
|
limord |
|
| 9 |
|
ordelon |
|
| 10 |
8 9
|
sylan |
|
| 11 |
|
on0eln0 |
|
| 12 |
|
el1o |
|
| 13 |
12
|
necon3bbii |
|
| 14 |
11 13
|
bitr4di |
|
| 15 |
|
oe0m1 |
|
| 16 |
15
|
biimpd |
|
| 17 |
14 16
|
sylbird |
|
| 18 |
10 17
|
syl |
|
| 19 |
18
|
impr |
|
| 20 |
7 19
|
sylan2b |
|
| 21 |
20
|
iuneq2dv |
|
| 22 |
|
df-1o |
|
| 23 |
|
limsuc |
|
| 24 |
2 23
|
mpbid |
|
| 25 |
22 24
|
eqeltrid |
|
| 26 |
|
1on |
|
| 27 |
26
|
onirri |
|
| 28 |
|
eldif |
|
| 29 |
25 27 28
|
sylanblrc |
|
| 30 |
|
ne0i |
|
| 31 |
|
iunconst |
|
| 32 |
29 30 31
|
3syl |
|
| 33 |
21 32
|
eqtrd |
|
| 34 |
33
|
adantl |
|
| 35 |
6 34
|
eqtr4d |
|
| 36 |
|
oveq1 |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
iuneq2d |
|
| 39 |
36 38
|
eqeq12d |
|
| 40 |
35 39
|
imbitrrid |
|
| 41 |
40
|
impcom |
|
| 42 |
|
oelim |
|
| 43 |
|
limsuc |
|
| 44 |
43
|
biimpa |
|
| 45 |
|
nsuceq0 |
|
| 46 |
|
dif1o |
|
| 47 |
44 45 46
|
sylanblrc |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
ad2antlr |
|
| 50 |
|
sssucid |
|
| 51 |
|
ordelon |
|
| 52 |
8 51
|
sylan |
|
| 53 |
|
onsuc |
|
| 54 |
52 53
|
jccir |
|
| 55 |
|
id |
|
| 56 |
55
|
3expa |
|
| 57 |
56
|
ancoms |
|
| 58 |
54 57
|
sylan2 |
|
| 59 |
58
|
anassrs |
|
| 60 |
|
oewordi |
|
| 61 |
59 60
|
sylan |
|
| 62 |
61
|
an32s |
|
| 63 |
50 62
|
mpi |
|
| 64 |
63
|
ex |
|
| 65 |
49 64
|
jcad |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
sseq2d |
|
| 68 |
67
|
rspcev |
|
| 69 |
65 68
|
syl6 |
|
| 70 |
69
|
ralrimiv |
|
| 71 |
|
iunss2 |
|
| 72 |
70 71
|
syl |
|
| 73 |
|
difss |
|
| 74 |
|
iunss1 |
|
| 75 |
73 74
|
ax-mp |
|
| 76 |
|
oveq2 |
|
| 77 |
76
|
cbviunv |
|
| 78 |
75 77
|
sseqtri |
|
| 79 |
78
|
a1i |
|
| 80 |
72 79
|
eqssd |
|
| 81 |
80
|
adantlrl |
|
| 82 |
42 81
|
eqtrd |
|
| 83 |
41 82
|
oe0lem |
|