Step |
Hyp |
Ref |
Expression |
1 |
|
limelon |
|
2 |
|
0ellim |
|
3 |
2
|
adantl |
|
4 |
|
oe0m1 |
|
5 |
4
|
biimpa |
|
6 |
1 3 5
|
syl2anc |
|
7 |
|
eldif |
|
8 |
|
limord |
|
9 |
|
ordelon |
|
10 |
8 9
|
sylan |
|
11 |
|
on0eln0 |
|
12 |
|
el1o |
|
13 |
12
|
necon3bbii |
|
14 |
11 13
|
bitr4di |
|
15 |
|
oe0m1 |
|
16 |
15
|
biimpd |
|
17 |
14 16
|
sylbird |
|
18 |
10 17
|
syl |
|
19 |
18
|
impr |
|
20 |
7 19
|
sylan2b |
|
21 |
20
|
iuneq2dv |
|
22 |
|
df-1o |
|
23 |
|
limsuc |
|
24 |
2 23
|
mpbid |
|
25 |
22 24
|
eqeltrid |
|
26 |
|
1on |
|
27 |
26
|
onirri |
|
28 |
|
eldif |
|
29 |
25 27 28
|
sylanblrc |
|
30 |
|
ne0i |
|
31 |
|
iunconst |
|
32 |
29 30 31
|
3syl |
|
33 |
21 32
|
eqtrd |
|
34 |
33
|
adantl |
|
35 |
6 34
|
eqtr4d |
|
36 |
|
oveq1 |
|
37 |
|
oveq1 |
|
38 |
37
|
iuneq2d |
|
39 |
36 38
|
eqeq12d |
|
40 |
35 39
|
syl5ibr |
|
41 |
40
|
impcom |
|
42 |
|
oelim |
|
43 |
|
limsuc |
|
44 |
43
|
biimpa |
|
45 |
|
nsuceq0 |
|
46 |
|
dif1o |
|
47 |
44 45 46
|
sylanblrc |
|
48 |
47
|
ex |
|
49 |
48
|
ad2antlr |
|
50 |
|
sssucid |
|
51 |
|
ordelon |
|
52 |
8 51
|
sylan |
|
53 |
|
suceloni |
|
54 |
52 53
|
jccir |
|
55 |
|
id |
|
56 |
55
|
3expa |
|
57 |
56
|
ancoms |
|
58 |
54 57
|
sylan2 |
|
59 |
58
|
anassrs |
|
60 |
|
oewordi |
|
61 |
59 60
|
sylan |
|
62 |
61
|
an32s |
|
63 |
50 62
|
mpi |
|
64 |
63
|
ex |
|
65 |
49 64
|
jcad |
|
66 |
|
oveq2 |
|
67 |
66
|
sseq2d |
|
68 |
67
|
rspcev |
|
69 |
65 68
|
syl6 |
|
70 |
69
|
ralrimiv |
|
71 |
|
iunss2 |
|
72 |
70 71
|
syl |
|
73 |
|
difss |
|
74 |
|
iunss1 |
|
75 |
73 74
|
ax-mp |
|
76 |
|
oveq2 |
|
77 |
76
|
cbviunv |
|
78 |
75 77
|
sseqtri |
|
79 |
78
|
a1i |
|
80 |
72 79
|
eqssd |
|
81 |
80
|
adantlrl |
|
82 |
42 81
|
eqtrd |
|
83 |
41 82
|
oe0lem |
|