Metamath Proof Explorer


Theorem 0ellim

Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994)

Ref Expression
Assertion 0ellim LimAA

Proof

Step Hyp Ref Expression
1 nlim0 ¬Lim
2 limeq A=LimALim
3 1 2 mtbiri A=¬LimA
4 3 necon2ai LimAA
5 limord LimAOrdA
6 ord0eln0 OrdAAA
7 5 6 syl LimAAA
8 4 7 mpbird LimAA