Metamath Proof Explorer


Theorem nsuceq0

Description: No successor is empty. (Contributed by NM, 3-Apr-1995)

Ref Expression
Assertion nsuceq0 sucA

Proof

Step Hyp Ref Expression
1 noel ¬A
2 sucidg AVAsucA
3 eleq2 sucA=AsucAA
4 2 3 syl5ibcom AVsucA=A
5 1 4 mtoi AV¬sucA=
6 0ex V
7 eleq1 A=AVV
8 6 7 mpbiri A=AV
9 8 con3i ¬AV¬A=
10 sucprc ¬AVsucA=A
11 10 eqeq1d ¬AVsucA=A=
12 9 11 mtbird ¬AV¬sucA=
13 5 12 pm2.61i ¬sucA=
14 13 neir sucA