Metamath Proof Explorer


Theorem eqelsuc

Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypothesis eqelsuc.1 AV
Assertion eqelsuc A=BAsucB

Proof

Step Hyp Ref Expression
1 eqelsuc.1 AV
2 1 sucid AsucA
3 suceq A=BsucA=sucB
4 2 3 eleqtrid A=BAsucB