Metamath Proof Explorer


Theorem eleqtrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eleqtrid.1 AB
eleqtrid.2 φB=C
Assertion eleqtrid φAC

Proof

Step Hyp Ref Expression
1 eleqtrid.1 AB
2 eleqtrid.2 φB=C
3 1 a1i φAB
4 3 2 eleqtrd φAC