| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
| 2 |
|
0ellim |
⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∅ ∈ 𝐵 ) |
| 4 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 5 |
4
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 6 |
1 3 5
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 7 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 1o ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 1o ) ) |
| 8 |
|
limord |
⊢ ( Lim 𝐵 → Ord 𝐵 ) |
| 9 |
|
ordelon |
⊢ ( ( Ord 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 10 |
8 9
|
sylan |
⊢ ( ( Lim 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 11 |
|
on0eln0 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ 𝑥 ≠ ∅ ) ) |
| 12 |
|
el1o |
⊢ ( 𝑥 ∈ 1o ↔ 𝑥 = ∅ ) |
| 13 |
12
|
necon3bbii |
⊢ ( ¬ 𝑥 ∈ 1o ↔ 𝑥 ≠ ∅ ) |
| 14 |
11 13
|
bitr4di |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ¬ 𝑥 ∈ 1o ) ) |
| 15 |
|
oe0m1 |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 16 |
15
|
biimpd |
⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 → ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 17 |
14 16
|
sylbird |
⊢ ( 𝑥 ∈ On → ( ¬ 𝑥 ∈ 1o → ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 18 |
10 17
|
syl |
⊢ ( ( Lim 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 1o → ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 19 |
18
|
impr |
⊢ ( ( Lim 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 1o ) ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 20 |
7 19
|
sylan2b |
⊢ ( ( Lim 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ 1o ) ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 21 |
20
|
iuneq2dv |
⊢ ( Lim 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ∅ ) |
| 22 |
|
df-1o |
⊢ 1o = suc ∅ |
| 23 |
|
limsuc |
⊢ ( Lim 𝐵 → ( ∅ ∈ 𝐵 ↔ suc ∅ ∈ 𝐵 ) ) |
| 24 |
2 23
|
mpbid |
⊢ ( Lim 𝐵 → suc ∅ ∈ 𝐵 ) |
| 25 |
22 24
|
eqeltrid |
⊢ ( Lim 𝐵 → 1o ∈ 𝐵 ) |
| 26 |
|
1on |
⊢ 1o ∈ On |
| 27 |
26
|
onirri |
⊢ ¬ 1o ∈ 1o |
| 28 |
|
eldif |
⊢ ( 1o ∈ ( 𝐵 ∖ 1o ) ↔ ( 1o ∈ 𝐵 ∧ ¬ 1o ∈ 1o ) ) |
| 29 |
25 27 28
|
sylanblrc |
⊢ ( Lim 𝐵 → 1o ∈ ( 𝐵 ∖ 1o ) ) |
| 30 |
|
ne0i |
⊢ ( 1o ∈ ( 𝐵 ∖ 1o ) → ( 𝐵 ∖ 1o ) ≠ ∅ ) |
| 31 |
|
iunconst |
⊢ ( ( 𝐵 ∖ 1o ) ≠ ∅ → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ∅ = ∅ ) |
| 32 |
29 30 31
|
3syl |
⊢ ( Lim 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ∅ = ∅ ) |
| 33 |
21 32
|
eqtrd |
⊢ ( Lim 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) = ∅ ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) = ∅ ) |
| 35 |
6 34
|
eqtr4d |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) ) |
| 36 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
| 37 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( ∅ ↑o 𝑥 ) ) |
| 38 |
37
|
iuneq2d |
⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) ) |
| 39 |
36 38
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ↔ ( ∅ ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) ) ) |
| 40 |
35 39
|
imbitrrid |
⊢ ( 𝐴 = ∅ → ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) ) |
| 41 |
40
|
impcom |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 42 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ) |
| 43 |
|
limsuc |
⊢ ( Lim 𝐵 → ( 𝑦 ∈ 𝐵 ↔ suc 𝑦 ∈ 𝐵 ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → suc 𝑦 ∈ 𝐵 ) |
| 45 |
|
nsuceq0 |
⊢ suc 𝑦 ≠ ∅ |
| 46 |
|
dif1o |
⊢ ( suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ↔ ( suc 𝑦 ∈ 𝐵 ∧ suc 𝑦 ≠ ∅ ) ) |
| 47 |
44 45 46
|
sylanblrc |
⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ) |
| 48 |
47
|
ex |
⊢ ( Lim 𝐵 → ( 𝑦 ∈ 𝐵 → suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ) ) |
| 49 |
48
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ) ) |
| 50 |
|
sssucid |
⊢ 𝑦 ⊆ suc 𝑦 |
| 51 |
|
ordelon |
⊢ ( ( Ord 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) |
| 52 |
8 51
|
sylan |
⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) |
| 53 |
|
onsuc |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
| 54 |
52 53
|
jccir |
⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ) ) |
| 55 |
|
id |
⊢ ( ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 56 |
55
|
3expa |
⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 57 |
56
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ) ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 58 |
54 57
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 59 |
58
|
anassrs |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 60 |
|
oewordi |
⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ⊆ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 61 |
59 60
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ⊆ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 62 |
61
|
an32s |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 63 |
50 62
|
mpi |
⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) |
| 64 |
63
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 65 |
49 64
|
jcad |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 66 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 67 |
66
|
sseq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 68 |
67
|
rspcev |
⊢ ( ( suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ) |
| 69 |
65 68
|
syl6 |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 70 |
69
|
ralrimiv |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ) |
| 71 |
|
iunss2 |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 72 |
70 71
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 73 |
|
difss |
⊢ ( 𝐵 ∖ 1o ) ⊆ 𝐵 |
| 74 |
|
iunss1 |
⊢ ( ( 𝐵 ∖ 1o ) ⊆ 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) |
| 75 |
73 74
|
ax-mp |
⊢ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) |
| 76 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 77 |
76
|
cbviunv |
⊢ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) |
| 78 |
75 77
|
sseqtri |
⊢ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) |
| 79 |
78
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ) |
| 80 |
72 79
|
eqssd |
⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 81 |
80
|
adantlrl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 82 |
42 81
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 83 |
41 82
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |