| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oeoalem.1 |
⊢ 𝐴 ∈ On |
| 2 |
|
oeoalem.2 |
⊢ ∅ ∈ 𝐴 |
| 3 |
|
oeoalem.3 |
⊢ 𝐵 ∈ On |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 +o ∅ ) ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o ∅ ) ) ) |
| 8 |
5 7
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝐴 ↑o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o ∅ ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 13 |
10 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 18 |
15 17
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐶 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 23 |
20 22
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) ↔ ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
| 24 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 25 |
1 3 24
|
mp2an |
⊢ ( 𝐴 ↑o 𝐵 ) ∈ On |
| 26 |
|
om1 |
⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → ( ( 𝐴 ↑o 𝐵 ) ·o 1o ) = ( 𝐴 ↑o 𝐵 ) ) |
| 27 |
25 26
|
ax-mp |
⊢ ( ( 𝐴 ↑o 𝐵 ) ·o 1o ) = ( 𝐴 ↑o 𝐵 ) |
| 28 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
| 29 |
1 28
|
ax-mp |
⊢ ( 𝐴 ↑o ∅ ) = 1o |
| 30 |
29
|
oveq2i |
⊢ ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o ∅ ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o 1o ) |
| 31 |
|
oa0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 32 |
3 31
|
ax-mp |
⊢ ( 𝐵 +o ∅ ) = 𝐵 |
| 33 |
32
|
oveq2i |
⊢ ( 𝐴 ↑o ( 𝐵 +o ∅ ) ) = ( 𝐴 ↑o 𝐵 ) |
| 34 |
27 30 33
|
3eqtr4ri |
⊢ ( 𝐴 ↑o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o ∅ ) ) |
| 35 |
|
oasuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 ↑o suc ( 𝐵 +o 𝑦 ) ) ) |
| 37 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
| 38 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 +o 𝑦 ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ·o 𝐴 ) ) |
| 39 |
1 37 38
|
sylancr |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ·o 𝐴 ) ) |
| 40 |
36 39
|
eqtrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ·o 𝐴 ) ) |
| 41 |
3 40
|
mpan |
⊢ ( 𝑦 ∈ On → ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ·o 𝐴 ) ) |
| 42 |
|
oveq1 |
⊢ ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) → ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ·o 𝐴 ) = ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) ) |
| 43 |
41 42
|
sylan9eq |
⊢ ( ( 𝑦 ∈ On ∧ ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) ) |
| 44 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 45 |
|
omass |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 46 |
25 1 45
|
mp3an13 |
⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 47 |
44 46
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 48 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 50 |
47 49
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 51 |
1 50
|
mpan |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑦 ∈ On ∧ ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) → ( ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ·o 𝐴 ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 53 |
43 52
|
eqtrd |
⊢ ( ( 𝑦 ∈ On ∧ ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 54 |
53
|
ex |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) → ( 𝐴 ↑o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 55 |
|
vex |
⊢ 𝑥 ∈ V |
| 56 |
|
oalim |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 57 |
3 56
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 58 |
55 57
|
mpan |
⊢ ( Lim 𝑥 → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( Lim 𝑥 → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) ) |
| 60 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
| 61 |
|
ordelon |
⊢ ( ( Ord 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 62 |
60 61
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 63 |
3 62 37
|
sylancr |
⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
| 64 |
63
|
ralrimiva |
⊢ ( Lim 𝑥 → ∀ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ∈ On ) |
| 65 |
|
0ellim |
⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) |
| 66 |
65
|
ne0d |
⊢ ( Lim 𝑥 → 𝑥 ≠ ∅ ) |
| 67 |
|
vex |
⊢ 𝑤 ∈ V |
| 68 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 69 |
2 68
|
mpan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 70 |
1 69
|
mpan |
⊢ ( ( 𝑤 ∈ V ∧ Lim 𝑤 ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 71 |
67 70
|
mpan |
⊢ ( Lim 𝑤 → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 72 |
|
oewordi |
⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
| 73 |
2 72
|
mpan2 |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
| 74 |
1 73
|
mp3an3 |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
| 75 |
74
|
3impia |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤 ) → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) |
| 76 |
71 75
|
onoviun |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ∈ On ∧ 𝑥 ≠ ∅ ) → ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ) |
| 77 |
55 64 66 76
|
mp3an2i |
⊢ ( Lim 𝑥 → ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ) |
| 78 |
59 77
|
eqtrd |
⊢ ( Lim 𝑥 → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) ) |
| 79 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 80 |
78 79
|
sylan9eq |
⊢ ( ( Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 81 |
|
oelim |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 82 |
2 81
|
mpan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 83 |
1 82
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 84 |
55 83
|
mpan |
⊢ ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 85 |
84
|
oveq2d |
⊢ ( Lim 𝑥 → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) ) |
| 86 |
1 62 44
|
sylancr |
⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 87 |
86
|
ralrimiva |
⊢ ( Lim 𝑥 → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 88 |
|
omlim |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) → ( ( 𝐴 ↑o 𝐵 ) ·o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( ( 𝐴 ↑o 𝐵 ) ·o 𝑧 ) ) |
| 89 |
25 88
|
mpan |
⊢ ( ( 𝑤 ∈ V ∧ Lim 𝑤 ) → ( ( 𝐴 ↑o 𝐵 ) ·o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( ( 𝐴 ↑o 𝐵 ) ·o 𝑧 ) ) |
| 90 |
67 89
|
mpan |
⊢ ( Lim 𝑤 → ( ( 𝐴 ↑o 𝐵 ) ·o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( ( 𝐴 ↑o 𝐵 ) ·o 𝑧 ) ) |
| 91 |
|
omwordi |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ ( 𝐴 ↑o 𝐵 ) ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( ( 𝐴 ↑o 𝐵 ) ·o 𝑧 ) ⊆ ( ( 𝐴 ↑o 𝐵 ) ·o 𝑤 ) ) ) |
| 92 |
25 91
|
mp3an3 |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( ( 𝐴 ↑o 𝐵 ) ·o 𝑧 ) ⊆ ( ( 𝐴 ↑o 𝐵 ) ·o 𝑤 ) ) ) |
| 93 |
92
|
3impia |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤 ) → ( ( 𝐴 ↑o 𝐵 ) ·o 𝑧 ) ⊆ ( ( 𝐴 ↑o 𝐵 ) ·o 𝑤 ) ) |
| 94 |
90 93
|
onoviun |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝑥 ≠ ∅ ) → ( ( 𝐴 ↑o 𝐵 ) ·o ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 95 |
55 87 66 94
|
mp3an2i |
⊢ ( Lim 𝑥 → ( ( 𝐴 ↑o 𝐵 ) ·o ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 96 |
85 95
|
eqtrd |
⊢ ( Lim 𝑥 → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) |
| 98 |
80 97
|
eqtr4d |
⊢ ( ( Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) ) |
| 99 |
98
|
ex |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑦 ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝑥 ) ) ) ) |
| 100 |
8 13 18 23 34 54 99
|
tfinds |
⊢ ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |