| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oa00 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +o 𝐶 ) = ∅ ↔ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 2 |
1
|
biimpar |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( 𝐵 +o 𝐶 ) = ∅ ) |
| 3 |
2
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝐶 = ∅ → ( ∅ ↑o 𝐶 ) = ( ∅ ↑o ∅ ) ) |
| 6 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝐶 = ∅ → ( ∅ ↑o 𝐶 ) = 1o ) |
| 8 |
4 7
|
oveqan12d |
⊢ ( ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ( ∅ ↑o ∅ ) ·o 1o ) ) |
| 9 |
|
0elon |
⊢ ∅ ∈ On |
| 10 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ ∅ ∈ On ) → ( ∅ ↑o ∅ ) ∈ On ) |
| 11 |
9 9 10
|
mp2an |
⊢ ( ∅ ↑o ∅ ) ∈ On |
| 12 |
|
om1 |
⊢ ( ( ∅ ↑o ∅ ) ∈ On → ( ( ∅ ↑o ∅ ) ·o 1o ) = ( ∅ ↑o ∅ ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ( ∅ ↑o ∅ ) ·o 1o ) = ( ∅ ↑o ∅ ) |
| 14 |
8 13
|
eqtrdi |
⊢ ( ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 16 |
3 15
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 17 |
|
oacl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +o 𝐶 ) ∈ On ) |
| 18 |
|
on0eln0 |
⊢ ( ( 𝐵 +o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( 𝐵 +o 𝐶 ) ≠ ∅ ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( 𝐵 +o 𝐶 ) ≠ ∅ ) ) |
| 20 |
|
oe0m1 |
⊢ ( ( 𝐵 +o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) ) |
| 21 |
17 20
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 +o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) ) |
| 22 |
1
|
necon3abid |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +o 𝐶 ) ≠ ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 23 |
19 21 22
|
3bitr3d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 24 |
23
|
biimpar |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ∅ ) |
| 25 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 27 |
|
on0eln0 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 29 |
26 28
|
orbi12d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ↔ ( 𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅ ) ) ) |
| 30 |
|
neorian |
⊢ ( ( 𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) |
| 31 |
29 30
|
bitrdi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) ) |
| 32 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 33 |
32
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ∅ ·o ( ∅ ↑o 𝐶 ) ) ) |
| 35 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ↑o 𝐶 ) ∈ On ) |
| 36 |
9 35
|
mpan |
⊢ ( 𝐶 ∈ On → ( ∅ ↑o 𝐶 ) ∈ On ) |
| 37 |
|
om0r |
⊢ ( ( ∅ ↑o 𝐶 ) ∈ On → ( ∅ ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 38 |
36 37
|
syl |
⊢ ( 𝐶 ∈ On → ( ∅ ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 39 |
34 38
|
sylan9eq |
⊢ ( ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 40 |
39
|
an32s |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 41 |
|
oe0m1 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ∅ ↑o 𝐶 ) = ∅ ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ∅ ↑o 𝐶 ) = ∅ ) |
| 43 |
42
|
oveq2d |
⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ∅ ) ) |
| 44 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 45 |
9 44
|
mpan |
⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 46 |
|
om0 |
⊢ ( ( ∅ ↑o 𝐵 ) ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) |
| 47 |
45 46
|
syl |
⊢ ( 𝐵 ∈ On → ( ( ∅ ↑o 𝐵 ) ·o ∅ ) = ∅ ) |
| 48 |
43 47
|
sylan9eqr |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 49 |
48
|
anassrs |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 50 |
40 49
|
jaodan |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 51 |
50
|
ex |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) ) |
| 52 |
31 51
|
sylbird |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) ) |
| 53 |
52
|
imp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) = ∅ ) |
| 54 |
24 53
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∧ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 55 |
16 54
|
pm2.61dan |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 56 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) ) |
| 57 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
| 58 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐶 ) = ( ∅ ↑o 𝐶 ) ) |
| 59 |
57 58
|
oveq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) |
| 60 |
56 59
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ↔ ( ∅ ↑o ( 𝐵 +o 𝐶 ) ) = ( ( ∅ ↑o 𝐵 ) ·o ( ∅ ↑o 𝐶 ) ) ) ) |
| 61 |
55 60
|
imbitrrid |
⊢ ( 𝐴 = ∅ → ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
| 62 |
61
|
impcom |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 63 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) ) |
| 64 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ) |
| 65 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐶 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) |
| 66 |
64 65
|
oveq12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
| 67 |
63 66
|
eqeq12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) |
| 68 |
67
|
imbi2d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ↔ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) ) |
| 69 |
|
oveq1 |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( 𝐵 +o 𝐶 ) = ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) |
| 70 |
69
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
| 73 |
70 72
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) |
| 74 |
73
|
imbi2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , 1o ) → ( ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ↔ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) ) ) |
| 75 |
|
eleq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) |
| 76 |
|
eleq2 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 𝐴 ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) |
| 77 |
75 76
|
anbi12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
| 78 |
|
eleq1 |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 1o ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) |
| 79 |
|
eleq2 |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 1o ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) |
| 80 |
78 79
|
anbi12d |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 1o ∈ On ∧ ∅ ∈ 1o ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
| 81 |
|
1on |
⊢ 1o ∈ On |
| 82 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 83 |
81 82
|
pm3.2i |
⊢ ( 1o ∈ On ∧ ∅ ∈ 1o ) |
| 84 |
77 80 83
|
elimhyp |
⊢ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) |
| 85 |
84
|
simpli |
⊢ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On |
| 86 |
84
|
simpri |
⊢ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) |
| 87 |
81
|
elimel |
⊢ if ( 𝐵 ∈ On , 𝐵 , 1o ) ∈ On |
| 88 |
85 86 87
|
oeoalem |
⊢ ( 𝐶 ∈ On → ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( if ( 𝐵 ∈ On , 𝐵 , 1o ) +o 𝐶 ) ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o if ( 𝐵 ∈ On , 𝐵 , 1o ) ) ·o ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐶 ) ) ) |
| 89 |
68 74 88
|
dedth2h |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) ) |
| 90 |
89
|
impr |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 91 |
90
|
an32s |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 92 |
62 91
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |
| 93 |
92
|
3impb |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ↑o 𝐵 ) ·o ( 𝐴 ↑o 𝐶 ) ) ) |