Metamath Proof Explorer


Theorem omlim

Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of TakeutiZaring p. 62. (Contributed by NM, 3-Aug-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion omlim ( ( 𝐴 ∈ On ∧ ( 𝐵𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = 𝑥𝐵 ( 𝐴 ·o 𝑥 ) )

Proof

Step Hyp Ref Expression
1 limelon ( ( 𝐵𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On )
2 simpr ( ( 𝐵𝐶 ∧ Lim 𝐵 ) → Lim 𝐵 )
3 1 2 jca ( ( 𝐵𝐶 ∧ Lim 𝐵 ) → ( 𝐵 ∈ On ∧ Lim 𝐵 ) )
4 rdglim2a ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) = 𝑥𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) )
5 4 adantl ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) = 𝑥𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) )
6 omv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) )
7 onelon ( ( 𝐵 ∈ On ∧ 𝑥𝐵 ) → 𝑥 ∈ On )
8 omv ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) )
9 7 8 sylan2 ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥𝐵 ) ) → ( 𝐴 ·o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) )
10 9 anassrs ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥𝐵 ) → ( 𝐴 ·o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) )
11 10 iuneq2dv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝑥𝐵 ( 𝐴 ·o 𝑥 ) = 𝑥𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) )
12 6 11 eqeq12d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = 𝑥𝐵 ( 𝐴 ·o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) = 𝑥𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) ) )
13 12 adantrr ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( ( 𝐴 ·o 𝐵 ) = 𝑥𝐵 ( 𝐴 ·o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) = 𝑥𝐵 ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 +o 𝐴 ) ) , ∅ ) ‘ 𝑥 ) ) )
14 5 13 mpbird ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = 𝑥𝐵 ( 𝐴 ·o 𝑥 ) )
15 3 14 sylan2 ( ( 𝐴 ∈ On ∧ ( 𝐵𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = 𝑥𝐵 ( 𝐴 ·o 𝑥 ) )