Description: The value of the recursive definition generator at a limit ordinal, in terms of indexed union of all smaller values. (Contributed by NM, 28-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdglim2a | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rdglim2 | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) | |
| 2 | fvex | ⊢ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ∈ V | |
| 3 | 2 | dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } | 
| 4 | 1 3 | eqtr4di | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) |