Metamath Proof Explorer


Theorem rdglim2a

Description: The value of the recursive definition generator at a limit ordinal, in terms of indexed union of all smaller values. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion rdglim2a BCLimBrecFAB=xBrecFAx

Proof

Step Hyp Ref Expression
1 rdglim2 BCLimBrecFAB=y|xBy=recFAx
2 fvex recFAxV
3 2 dfiun2 xBrecFAx=y|xBy=recFAx
4 1 3 eqtr4di BCLimBrecFAB=xBrecFAx