Metamath Proof Explorer


Theorem rdg0n

Description: If A is a proper class, then the recursive function generator at (/) is the empty set. (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Assertion rdg0n ( ¬ 𝐴 ∈ V → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ∅ )

Proof

Step Hyp Ref Expression
1 0elon ∅ ∈ On
2 df-rdg rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) )
3 2 tfr2 ( ∅ ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) )
4 1 3 ax-mp ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) )
5 res0 ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) = ∅
6 5 fveq2i ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ‘ ∅ )
7 4 6 eqtri ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ‘ ∅ )
8 iftrue ( 𝑔 = ∅ → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) = 𝐴 )
9 eqid ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) )
10 8 9 fvmptn ( ¬ 𝐴 ∈ V → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) ‘ ∅ ) = ∅ )
11 7 10 eqtrid ( ¬ 𝐴 ∈ V → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ∅ )