Step |
Hyp |
Ref |
Expression |
1 |
|
0elon |
⊢ ∅ ∈ On |
2 |
|
df-rdg |
⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
3 |
2
|
tfr2 |
⊢ ( ∅ ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) ) |
4 |
1 3
|
ax-mp |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) |
5 |
|
res0 |
⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) = ∅ |
6 |
5
|
fveq2i |
⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) |
7 |
4 6
|
eqtri |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) |
8 |
|
iftrue |
⊢ ( 𝑔 = ∅ → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = 𝐴 ) |
9 |
|
eqid |
⊢ ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
10 |
8 9
|
fvmptn |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) = ∅ ) |
11 |
7 10
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ V → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ∅ ) |