| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 2 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝐴 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 3 | 2 | tfr2 | ⊢ ( ∅  ∈  On  →  ( rec ( 𝐹 ,  𝐴 ) ‘ ∅ )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐴 )  ↾  ∅ ) ) ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ( rec ( 𝐹 ,  𝐴 ) ‘ ∅ )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐴 )  ↾  ∅ ) ) | 
						
							| 5 |  | res0 | ⊢ ( rec ( 𝐹 ,  𝐴 )  ↾  ∅ )  =  ∅ | 
						
							| 6 | 5 | fveq2i | ⊢ ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐴 )  ↾  ∅ ) )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ ) | 
						
							| 7 | 4 6 | eqtri | ⊢ ( rec ( 𝐹 ,  𝐴 ) ‘ ∅ )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ ) | 
						
							| 8 |  | iftrue | ⊢ ( 𝑔  =  ∅  →  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  𝐴 ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 10 | 8 9 | fvmptn | ⊢ ( ¬  𝐴  ∈  V  →  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐴 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ )  =  ∅ ) | 
						
							| 11 | 7 10 | eqtrid | ⊢ ( ¬  𝐴  ∈  V  →  ( rec ( 𝐹 ,  𝐴 ) ‘ ∅ )  =  ∅ ) |