Metamath Proof Explorer


Theorem ontr2

Description: Transitive law for ordinal numbers. Exercise 3 of TakeutiZaring p. 40. (Contributed by NM, 6-Nov-2003)

Ref Expression
Assertion ontr2 AOnCOnABBCAC

Proof

Step Hyp Ref Expression
1 eloni AOnOrdA
2 eloni COnOrdC
3 ordtr2 OrdAOrdCABBCAC
4 1 2 3 syl2an AOnCOnABBCAC