Metamath Proof Explorer


Theorem omwordri

Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63. (Contributed by NM, 20-Dec-2004)

Ref Expression
Assertion omwordri A On B On C On A B A 𝑜 C B 𝑜 C

Proof

Step Hyp Ref Expression
1 oveq2 x = A 𝑜 x = A 𝑜
2 oveq2 x = B 𝑜 x = B 𝑜
3 1 2 sseq12d x = A 𝑜 x B 𝑜 x A 𝑜 B 𝑜
4 oveq2 x = y A 𝑜 x = A 𝑜 y
5 oveq2 x = y B 𝑜 x = B 𝑜 y
6 4 5 sseq12d x = y A 𝑜 x B 𝑜 x A 𝑜 y B 𝑜 y
7 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
8 oveq2 x = suc y B 𝑜 x = B 𝑜 suc y
9 7 8 sseq12d x = suc y A 𝑜 x B 𝑜 x A 𝑜 suc y B 𝑜 suc y
10 oveq2 x = C A 𝑜 x = A 𝑜 C
11 oveq2 x = C B 𝑜 x = B 𝑜 C
12 10 11 sseq12d x = C A 𝑜 x B 𝑜 x A 𝑜 C B 𝑜 C
13 om0 A On A 𝑜 =
14 0ss B 𝑜
15 13 14 eqsstrdi A On A 𝑜 B 𝑜
16 15 ad2antrr A On B On A B A 𝑜 B 𝑜
17 omcl A On y On A 𝑜 y On
18 17 3adant2 A On B On y On A 𝑜 y On
19 omcl B On y On B 𝑜 y On
20 19 3adant1 A On B On y On B 𝑜 y On
21 simp1 A On B On y On A On
22 oawordri A 𝑜 y On B 𝑜 y On A On A 𝑜 y B 𝑜 y A 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 A
23 18 20 21 22 syl3anc A On B On y On A 𝑜 y B 𝑜 y A 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 A
24 23 imp A On B On y On A 𝑜 y B 𝑜 y A 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 A
25 24 adantrl A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 A
26 oaword A On B On B 𝑜 y On A B B 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 B
27 20 26 syld3an3 A On B On y On A B B 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 B
28 27 biimpa A On B On y On A B B 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 B
29 28 adantrr A On B On y On A B A 𝑜 y B 𝑜 y B 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 B
30 25 29 sstrd A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 y + 𝑜 A B 𝑜 y + 𝑜 B
31 omsuc A On y On A 𝑜 suc y = A 𝑜 y + 𝑜 A
32 31 3adant2 A On B On y On A 𝑜 suc y = A 𝑜 y + 𝑜 A
33 32 adantr A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 suc y = A 𝑜 y + 𝑜 A
34 omsuc B On y On B 𝑜 suc y = B 𝑜 y + 𝑜 B
35 34 3adant1 A On B On y On B 𝑜 suc y = B 𝑜 y + 𝑜 B
36 35 adantr A On B On y On A B A 𝑜 y B 𝑜 y B 𝑜 suc y = B 𝑜 y + 𝑜 B
37 30 33 36 3sstr4d A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
38 37 exp520 A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
39 38 com3r y On A On B On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
40 39 imp4c y On A On B On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
41 vex x V
42 ss2iun y x A 𝑜 y B 𝑜 y y x A 𝑜 y y x B 𝑜 y
43 omlim A On x V Lim x A 𝑜 x = y x A 𝑜 y
44 43 ad2ant2rl A On x V Lim x B On x V Lim x A 𝑜 x = y x A 𝑜 y
45 omlim B On x V Lim x B 𝑜 x = y x B 𝑜 y
46 45 adantl A On x V Lim x B On x V Lim x B 𝑜 x = y x B 𝑜 y
47 44 46 sseq12d A On x V Lim x B On x V Lim x A 𝑜 x B 𝑜 x y x A 𝑜 y y x B 𝑜 y
48 42 47 syl5ibr A On x V Lim x B On x V Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
49 48 anandirs A On B On x V Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
50 41 49 mpanr1 A On B On Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
51 50 expcom Lim x A On B On y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
52 51 adantrd Lim x A On B On A B y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
53 3 6 9 12 16 40 52 tfinds3 C On A On B On A B A 𝑜 C B 𝑜 C
54 53 expd C On A On B On A B A 𝑜 C B 𝑜 C
55 54 3impib C On A On B On A B A 𝑜 C B 𝑜 C
56 55 3coml A On B On C On A B A 𝑜 C B 𝑜 C