Metamath Proof Explorer


Theorem oaword

Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion oaword AOnBOnCOnABC+𝑜AC+𝑜B

Proof

Step Hyp Ref Expression
1 oaord BOnAOnCOnBAC+𝑜BC+𝑜A
2 1 3com12 AOnBOnCOnBAC+𝑜BC+𝑜A
3 2 notbid AOnBOnCOn¬BA¬C+𝑜BC+𝑜A
4 ontri1 AOnBOnAB¬BA
5 4 3adant3 AOnBOnCOnAB¬BA
6 oacl COnAOnC+𝑜AOn
7 6 ancoms AOnCOnC+𝑜AOn
8 7 3adant2 AOnBOnCOnC+𝑜AOn
9 oacl COnBOnC+𝑜BOn
10 9 ancoms BOnCOnC+𝑜BOn
11 10 3adant1 AOnBOnCOnC+𝑜BOn
12 ontri1 C+𝑜AOnC+𝑜BOnC+𝑜AC+𝑜B¬C+𝑜BC+𝑜A
13 8 11 12 syl2anc AOnBOnCOnC+𝑜AC+𝑜B¬C+𝑜BC+𝑜A
14 3 5 13 3bitr4d AOnBOnCOnABC+𝑜AC+𝑜B