Metamath Proof Explorer


Theorem oaword

Description: Weak ordering property of ordinal addition. (Contributed by NM, 6-Dec-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion oaword ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 oaord ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) )
2 1 3com12 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) )
3 2 notbid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ 𝐵𝐴 ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) )
4 ontri1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
5 4 3adant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
6 oacl ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On )
7 6 ancoms ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On )
8 7 3adant2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On )
9 oacl ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On )
10 9 ancoms ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On )
11 10 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On )
12 ontri1 ( ( ( 𝐶 +o 𝐴 ) ∈ On ∧ ( 𝐶 +o 𝐵 ) ∈ On ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) )
13 8 11 12 syl2anc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) )
14 3 5 13 3bitr4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) )