Step |
Hyp |
Ref |
Expression |
1 |
|
oaord |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
2 |
1
|
3com12 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
4 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
6 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On ) |
9 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On ) |
10 |
9
|
ancoms |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On ) |
12 |
|
ontri1 |
⊢ ( ( ( 𝐶 +o 𝐴 ) ∈ On ∧ ( 𝐶 +o 𝐵 ) ∈ On ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
13 |
8 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
14 |
3 5 13
|
3bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |