Metamath Proof Explorer


Theorem omcl

Description: Closure law for ordinal multiplication. Proposition 8.16 of TakeutiZaring p. 57. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 3-Aug-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion omcl AOnBOnA𝑜BOn

Proof

Step Hyp Ref Expression
1 oveq2 x=A𝑜x=A𝑜
2 1 eleq1d x=A𝑜xOnA𝑜On
3 oveq2 x=yA𝑜x=A𝑜y
4 3 eleq1d x=yA𝑜xOnA𝑜yOn
5 oveq2 x=sucyA𝑜x=A𝑜sucy
6 5 eleq1d x=sucyA𝑜xOnA𝑜sucyOn
7 oveq2 x=BA𝑜x=A𝑜B
8 7 eleq1d x=BA𝑜xOnA𝑜BOn
9 om0 AOnA𝑜=
10 0elon On
11 9 10 eqeltrdi AOnA𝑜On
12 oacl A𝑜yOnAOnA𝑜y+𝑜AOn
13 12 expcom AOnA𝑜yOnA𝑜y+𝑜AOn
14 13 adantr AOnyOnA𝑜yOnA𝑜y+𝑜AOn
15 omsuc AOnyOnA𝑜sucy=A𝑜y+𝑜A
16 15 eleq1d AOnyOnA𝑜sucyOnA𝑜y+𝑜AOn
17 14 16 sylibrd AOnyOnA𝑜yOnA𝑜sucyOn
18 17 expcom yOnAOnA𝑜yOnA𝑜sucyOn
19 vex xV
20 iunon xVyxA𝑜yOnyxA𝑜yOn
21 19 20 mpan yxA𝑜yOnyxA𝑜yOn
22 omlim AOnxVLimxA𝑜x=yxA𝑜y
23 19 22 mpanr1 AOnLimxA𝑜x=yxA𝑜y
24 23 eleq1d AOnLimxA𝑜xOnyxA𝑜yOn
25 21 24 imbitrrid AOnLimxyxA𝑜yOnA𝑜xOn
26 25 expcom LimxAOnyxA𝑜yOnA𝑜xOn
27 2 4 6 8 11 18 26 tfinds3 BOnAOnA𝑜BOn
28 27 impcom AOnBOnA𝑜BOn