Description: Closure law for ordinal multiplication. Proposition 8.16 of TakeutiZaring p. 57. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 3-Aug-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | omcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eleq1d | |
3 | oveq2 | |
|
4 | 3 | eleq1d | |
5 | oveq2 | |
|
6 | 5 | eleq1d | |
7 | oveq2 | |
|
8 | 7 | eleq1d | |
9 | om0 | |
|
10 | 0elon | |
|
11 | 9 10 | eqeltrdi | |
12 | oacl | |
|
13 | 12 | expcom | |
14 | 13 | adantr | |
15 | omsuc | |
|
16 | 15 | eleq1d | |
17 | 14 16 | sylibrd | |
18 | 17 | expcom | |
19 | vex | |
|
20 | iunon | |
|
21 | 19 20 | mpan | |
22 | omlim | |
|
23 | 19 22 | mpanr1 | |
24 | 23 | eleq1d | |
25 | 21 24 | imbitrrid | |
26 | 25 | expcom | |
27 | 2 4 6 8 11 18 26 | tfinds3 | |
28 | 27 | impcom | |