Metamath Proof Explorer


Theorem omsuc

Description: Multiplication with successor. Definition 8.15 of TakeutiZaring p. 62. Definition 2.5 of Schloeder p. 4. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion omsuc AOnBOnA𝑜sucB=A𝑜B+𝑜A

Proof

Step Hyp Ref Expression
1 rdgsuc BOnrecxVx+𝑜AsucB=xVx+𝑜ArecxVx+𝑜AB
2 1 adantl AOnBOnrecxVx+𝑜AsucB=xVx+𝑜ArecxVx+𝑜AB
3 onsuc BOnsucBOn
4 omv AOnsucBOnA𝑜sucB=recxVx+𝑜AsucB
5 3 4 sylan2 AOnBOnA𝑜sucB=recxVx+𝑜AsucB
6 ovex A𝑜BV
7 oveq1 x=A𝑜Bx+𝑜A=A𝑜B+𝑜A
8 eqid xVx+𝑜A=xVx+𝑜A
9 ovex A𝑜B+𝑜AV
10 7 8 9 fvmpt A𝑜BVxVx+𝑜AA𝑜B=A𝑜B+𝑜A
11 6 10 ax-mp xVx+𝑜AA𝑜B=A𝑜B+𝑜A
12 omv AOnBOnA𝑜B=recxVx+𝑜AB
13 12 fveq2d AOnBOnxVx+𝑜AA𝑜B=xVx+𝑜ArecxVx+𝑜AB
14 11 13 eqtr3id AOnBOnA𝑜B+𝑜A=xVx+𝑜ArecxVx+𝑜AB
15 2 5 14 3eqtr4d AOnBOnA𝑜sucB=A𝑜B+𝑜A