| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eloni |
|- ( C e. On -> Ord C ) |
| 2 |
|
ordgt0ge1 |
|- ( Ord C -> ( (/) e. C <-> 1o C_ C ) ) |
| 3 |
1 2
|
syl |
|- ( C e. On -> ( (/) e. C <-> 1o C_ C ) ) |
| 4 |
|
1on |
|- 1o e. On |
| 5 |
|
onsseleq |
|- ( ( 1o e. On /\ C e. On ) -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 6 |
4 5
|
mpan |
|- ( C e. On -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 7 |
3 6
|
bitrd |
|- ( C e. On -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 9 |
|
ondif2 |
|- ( C e. ( On \ 2o ) <-> ( C e. On /\ 1o e. C ) ) |
| 10 |
|
oeword |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 11 |
10
|
biimpd |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 12 |
11
|
3expia |
|- ( ( A e. On /\ B e. On ) -> ( C e. ( On \ 2o ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 13 |
9 12
|
biimtrrid |
|- ( ( A e. On /\ B e. On ) -> ( ( C e. On /\ 1o e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 14 |
13
|
expd |
|- ( ( A e. On /\ B e. On ) -> ( C e. On -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) ) |
| 15 |
14
|
3impia |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 16 |
|
oe1m |
|- ( A e. On -> ( 1o ^o A ) = 1o ) |
| 17 |
16
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = 1o ) |
| 18 |
|
oe1m |
|- ( B e. On -> ( 1o ^o B ) = 1o ) |
| 19 |
18
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o B ) = 1o ) |
| 20 |
17 19
|
eqtr4d |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = ( 1o ^o B ) ) |
| 21 |
|
eqimss |
|- ( ( 1o ^o A ) = ( 1o ^o B ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) |
| 22 |
20 21
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) |
| 23 |
|
oveq1 |
|- ( 1o = C -> ( 1o ^o A ) = ( C ^o A ) ) |
| 24 |
|
oveq1 |
|- ( 1o = C -> ( 1o ^o B ) = ( C ^o B ) ) |
| 25 |
23 24
|
sseq12d |
|- ( 1o = C -> ( ( 1o ^o A ) C_ ( 1o ^o B ) <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 26 |
22 25
|
syl5ibcom |
|- ( ( A e. On /\ B e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 27 |
26
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 28 |
27
|
a1dd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 29 |
15 28
|
jaod |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( 1o e. C \/ 1o = C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 30 |
8 29
|
sylbid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 31 |
30
|
imp |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |