Metamath Proof Explorer


Theorem oeord2com

Description: When the same base at least as large as two is raised to ordinal powers, , ordering of the power is equivalent to the ordering of the exponents. Theorem 3.24 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oeord2com
|- ( ( ( A e. On /\ 1o e. A ) /\ B e. On /\ C e. On ) -> ( B e. C <-> ( A ^o B ) e. ( A ^o C ) ) )

Proof

Step Hyp Ref Expression
1 ondif2
 |-  ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) )
2 1 3anbi1i
 |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) <-> ( ( A e. On /\ 1o e. A ) /\ B e. On /\ C e. On ) )
3 3anrot
 |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) <-> ( B e. On /\ C e. On /\ A e. ( On \ 2o ) ) )
4 2 3 sylbb1
 |-  ( ( ( A e. On /\ 1o e. A ) /\ B e. On /\ C e. On ) -> ( B e. On /\ C e. On /\ A e. ( On \ 2o ) ) )
5 oeord
 |-  ( ( B e. On /\ C e. On /\ A e. ( On \ 2o ) ) -> ( B e. C <-> ( A ^o B ) e. ( A ^o C ) ) )
6 4 5 syl
 |-  ( ( ( A e. On /\ 1o e. A ) /\ B e. On /\ C e. On ) -> ( B e. C <-> ( A ^o B ) e. ( A ^o C ) ) )